{"title":"Characterization and biocompatibility evaluation of acellular rat skin scaffolds for skin tissue engineering applications.","authors":"Leila Taghizadeh Momen, Arash Abdolmaleki, Asadollah Asadi, Saber Zahri","doi":"10.1007/s10561-023-10109-w","DOIUrl":null,"url":null,"abstract":"<p><p>Utilization of acellular scaffolds, extracellular matrix (ECM) without cell content, is growing in tissue engineering, due to their high biocompatibility, bioactivity ad mechanical support. Hence, the purpose of this research was to study the characteristics and biocompatibility of decellularized rat skin scaffolds using the osmotic shock method. First, the skin of male Wistar rats was harvested and cut into 1 × 1 cm<sup>2</sup> pieces. Then, some of the harvested parts were subjected to the decellularization process by applying osmotic shock. Comparison of control and scaffold samples was conducted in order to assure cell elimination and ECM conservation by means of histological evaluations, quantification of biochemical factors, measurement of DNA amount, and photographing the ultrastructure of the samples by scanning electron microscopy (SEM). In order to evaluate stem cell viability and adhesion to the scaffold, adipose-derived mesenchymal stem cells (AD-MSCs) were seeded on the acellular scaffolds. Subsequently, MTT test and SEM imaging of the scaffolds containing cultured cells were applied. The findings indicated that in the decellularized scaffolds prepared by osmotic shock method, not only the cell content was removed, but also the ECM components and its ultrastructure were preserved. Also, the 99% viability and adhesion of AD-MSCs cultured on the scaffolds indicate the biocompatibility of the decellularized skin scaffold. In conclusion, decellularized rat skin scaffolds are biocompatible and appropriate scaffolds for future investigations of tissue engineering applications.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10561-023-10109-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Utilization of acellular scaffolds, extracellular matrix (ECM) without cell content, is growing in tissue engineering, due to their high biocompatibility, bioactivity ad mechanical support. Hence, the purpose of this research was to study the characteristics and biocompatibility of decellularized rat skin scaffolds using the osmotic shock method. First, the skin of male Wistar rats was harvested and cut into 1 × 1 cm2 pieces. Then, some of the harvested parts were subjected to the decellularization process by applying osmotic shock. Comparison of control and scaffold samples was conducted in order to assure cell elimination and ECM conservation by means of histological evaluations, quantification of biochemical factors, measurement of DNA amount, and photographing the ultrastructure of the samples by scanning electron microscopy (SEM). In order to evaluate stem cell viability and adhesion to the scaffold, adipose-derived mesenchymal stem cells (AD-MSCs) were seeded on the acellular scaffolds. Subsequently, MTT test and SEM imaging of the scaffolds containing cultured cells were applied. The findings indicated that in the decellularized scaffolds prepared by osmotic shock method, not only the cell content was removed, but also the ECM components and its ultrastructure were preserved. Also, the 99% viability and adhesion of AD-MSCs cultured on the scaffolds indicate the biocompatibility of the decellularized skin scaffold. In conclusion, decellularized rat skin scaffolds are biocompatible and appropriate scaffolds for future investigations of tissue engineering applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.