Umami taste perception and preferences of the domestic cat (Felis catus), an obligate carnivore.

IF 2.8 4区 心理学 Q1 BEHAVIORAL SCIENCES
Scott J McGrane, Matthew Gibbs, Carlos Hernangomez de Alvaro, Nicola Dunlop, Marcel Winnig, Boris Klebansky, Daniel Waller
{"title":"Umami taste perception and preferences of the domestic cat (Felis catus), an obligate carnivore.","authors":"Scott J McGrane,&nbsp;Matthew Gibbs,&nbsp;Carlos Hernangomez de Alvaro,&nbsp;Nicola Dunlop,&nbsp;Marcel Winnig,&nbsp;Boris Klebansky,&nbsp;Daniel Waller","doi":"10.1093/chemse/bjad026","DOIUrl":null,"url":null,"abstract":"<p><p>The domestic cat (Felis catus) is an obligate carnivore, and as such has a meat-based diet. Several studies on the taste perception of cats have been reported, indicating that their sense of taste has evolved based on their carnivorous diet. Here, we propose that umami (mediated by Tas1r1-Tas1r3) is the main appetitive taste modality for the domestic cat by characterizing the umami taste of a range of nucleotides, amino acids, and their mixtures for cats obtained using complementary methods. We show for the first time that cats express Tas1r1 in taste papillae. The cat umami receptor responds to a range of nucleotides as agonists, with the purine nucleotides having the highest activity. Their umami receptor does not respond to any amino acids alone; however, 11 l-amino acids with a range of chemical characteristics act as enhancers in combination with a nucleotide. l-Glutamic acid and l-Aspartic acid are not active as either agonists or enhancers of the cat umami receptor due to changes in key binding residues at positions 170 and 302. Overall, cats have an appetitive behavioral response for nucleotides, l-amino acids, and their mixtures. We postulate that the renowned palatability of tuna for cats may be due, at least in part, to its specific combination of high levels of inosine monophosphate and free l-Histidine that produces a strong synergistic umami taste enhancement. These results demonstrate the critical role that the umami receptor plays in enabling cats to detect key taste compounds present in meat.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjad026","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The domestic cat (Felis catus) is an obligate carnivore, and as such has a meat-based diet. Several studies on the taste perception of cats have been reported, indicating that their sense of taste has evolved based on their carnivorous diet. Here, we propose that umami (mediated by Tas1r1-Tas1r3) is the main appetitive taste modality for the domestic cat by characterizing the umami taste of a range of nucleotides, amino acids, and their mixtures for cats obtained using complementary methods. We show for the first time that cats express Tas1r1 in taste papillae. The cat umami receptor responds to a range of nucleotides as agonists, with the purine nucleotides having the highest activity. Their umami receptor does not respond to any amino acids alone; however, 11 l-amino acids with a range of chemical characteristics act as enhancers in combination with a nucleotide. l-Glutamic acid and l-Aspartic acid are not active as either agonists or enhancers of the cat umami receptor due to changes in key binding residues at positions 170 and 302. Overall, cats have an appetitive behavioral response for nucleotides, l-amino acids, and their mixtures. We postulate that the renowned palatability of tuna for cats may be due, at least in part, to its specific combination of high levels of inosine monophosphate and free l-Histidine that produces a strong synergistic umami taste enhancement. These results demonstrate the critical role that the umami receptor plays in enabling cats to detect key taste compounds present in meat.

Abstract Image

Abstract Image

Abstract Image

专性食肉动物家猫(Felis catus)的鲜味感知和偏好。
家猫(Felis catus)是专性食肉动物,因此以肉类为基础的饮食。据报道,几项关于猫的味觉的研究表明,它们的味觉是基于它们的食肉性饮食而进化的。在这里,我们提出鲜味(由Tas1r1-Tas1r3介导)是家猫的主要食欲味觉形态,通过描述一系列核苷酸、氨基酸及其混合物的鲜味,猫使用互补方法获得。我们首次发现猫在味觉乳头中表达Tas1r1。猫鲜味受体对一系列核苷酸作为激动剂作出反应,嘌呤核苷酸具有最高的活性。它们的鲜味受体对任何氨基酸都没有反应;然而,11种具有一系列化学特性的l-氨基酸在与核苷酸结合时起促进作用。l-谷氨酸和l-天冬氨酸作为猫鲜味受体的激动剂或增强剂没有活性,这是由于170和302位置的关键结合残基发生了变化。总的来说,猫对核苷酸、l-氨基酸及其混合物有食欲行为反应。我们假设,金枪鱼对猫来说是出了名的适口性,至少部分是由于其高水平的肌苷单磷酸和游离l-组氨酸的特定组合,产生了强大的增效鲜味增强。这些结果证明了鲜味受体在猫检测肉中存在的关键味道化合物方面所起的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Senses
Chemical Senses 医学-行为科学
CiteScore
8.60
自引率
2.90%
发文量
25
审稿时长
1 months
期刊介绍: Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信