Analysis of the phosphoproteome in human dental follicle cells during osteogenic differentiation

IF 1.8 4区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Christian Morsczeck, Oliver Pieles, Hans-Christian Beck
{"title":"Analysis of the phosphoproteome in human dental follicle cells during osteogenic differentiation","authors":"Christian Morsczeck,&nbsp;Oliver Pieles,&nbsp;Hans-Christian Beck","doi":"10.1111/eos.12952","DOIUrl":null,"url":null,"abstract":"<p>Dental follicle cells (DFCs) are osteogenic progenitor cells and are well suited for molecular studies of differentiation of alveolar osteoblasts. A recent study examined the metabolism in DFCs during osteogenic differentiation and showed that energy metabolism is increased after 14 days of differentiation (mid phase). However, previous studies have examined proteomes at early (2 h, 24 h) or very late (28 days) stages of differentiation, but not during the phase of increased metabolic activity. In this study, we examined the phosphoproteome at the mid phase (14 days) of osteogenic differentiation. Analysis of DFC phosphoproteomes showed that during this phase of osteogenic differentiation, proteins that are part of signal transduction are significantly regulated. Proteins involved in the regulation of the cytoskeleton and apoptosis were also increased in expression. As osteogenic differentiation induced oxidative stress and apoptosis in DFCs, the oxidative stress defense protein, catalase, was also upregulated during osteogenic differentiation, which supports the biomineralization of DFCs. In summary, this study revealed that during the middle phase (14 days) of osteogenic differentiation, processes in DFCs related to the control of cell organization, apoptosis, and oxidative stress are regulated.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.12952","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Dental follicle cells (DFCs) are osteogenic progenitor cells and are well suited for molecular studies of differentiation of alveolar osteoblasts. A recent study examined the metabolism in DFCs during osteogenic differentiation and showed that energy metabolism is increased after 14 days of differentiation (mid phase). However, previous studies have examined proteomes at early (2 h, 24 h) or very late (28 days) stages of differentiation, but not during the phase of increased metabolic activity. In this study, we examined the phosphoproteome at the mid phase (14 days) of osteogenic differentiation. Analysis of DFC phosphoproteomes showed that during this phase of osteogenic differentiation, proteins that are part of signal transduction are significantly regulated. Proteins involved in the regulation of the cytoskeleton and apoptosis were also increased in expression. As osteogenic differentiation induced oxidative stress and apoptosis in DFCs, the oxidative stress defense protein, catalase, was also upregulated during osteogenic differentiation, which supports the biomineralization of DFCs. In summary, this study revealed that during the middle phase (14 days) of osteogenic differentiation, processes in DFCs related to the control of cell organization, apoptosis, and oxidative stress are regulated.

Abstract Image

成骨分化过程中人牙毛囊细胞磷酸化蛋白质组的分析。
牙毛囊细胞(DFCs)是成骨祖细胞,非常适合于肺泡成骨细胞分化的分子研究。最近的一项研究检测了DFCs在成骨分化过程中的代谢,并表明分化14天后(中期)能量代谢增加。然而,先前的研究已经检查了分化早期(2小时、24小时)或非常晚期(28天)的蛋白质组,但没有检查代谢活性增加阶段的蛋白质组。在本研究中,我们检测了成骨分化中期(14天)的磷酸蛋白质组。DFC磷酸蛋白质组的分析表明,在成骨分化的这一阶段,作为信号转导一部分的蛋白质受到显著调节。参与细胞骨架调节和细胞凋亡的蛋白质表达也增加。由于成骨分化诱导DFCs的氧化应激和凋亡,氧化应激防御蛋白过氧化氢酶在成骨分化过程中也上调,这支持DFCs的生物矿化。总之,本研究表明,在成骨分化的中期(14天),DFCs中与细胞组织控制、细胞凋亡和氧化应激相关的过程受到调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Oral Sciences
European Journal of Oral Sciences 医学-牙科与口腔外科
CiteScore
3.50
自引率
5.30%
发文量
61
审稿时长
2 months
期刊介绍: The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication. The journal is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信