Kosuke Kaida , Ikue Mori , Ken Kihara , Naoko Kaida
{"title":"The function of REM and NREM sleep on memory distortion and consolidation","authors":"Kosuke Kaida , Ikue Mori , Ken Kihara , Naoko Kaida","doi":"10.1016/j.nlm.2023.107811","DOIUrl":null,"url":null,"abstract":"<div><p>During rapid eye movement (REM) sleep, newly consolidated memories can be distorted to adjust the existing memory base in memory integration. However, only a few studies have demonstrated the role of REM sleep in memory distortion. The present study aims to clarify the role of REM sleep in the facilitation of memory distortion, that is, hindsight bias, compared to non-rapid eye movement (NREM) sleep and wake states. The split-night paradigm was used to segregate REM and NREM sleep. The hypotheses are (1) hindsight bias—memory distortion—is more substantial during REM-rich sleep (late-night sleep) than during NREM-rich sleep (early-night sleep); (2) memory stabilization is more substantial during NREM-rich sleep (early-night sleep) than during REM-rich sleep (late-night sleep); and (3) memory distortion takes longer time than memory stabilization. The results of the hindsight bias test show that more memory distortions were observed after the REM condition in comparison to the NREM condition. Contrary to the hindsight bias, the correct response in the word-pair association test was observed more in the NREM than in the REM condition. The difference in the hindsight bias index between the REM and NREM conditions was identified only one week later. Comparatively, the difference in correct responses in the word-pair association task between the conditions appeared three hours later and one week later. The present study found that (1) memory distortion occurs more during REM-rich sleep than during NREM-rich sleep, while memory stabilization occurs more during NREM-rich sleep than during REM-rich sleep. Moreover, (2) the newly encoded memory could be stabilized immediately after encoding, but memory distortion occurs over several days. These results suggest that the roles of NREM and REM sleep in memory processes could be different.</p></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":"204 ","pages":"Article 107811"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742723000928","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During rapid eye movement (REM) sleep, newly consolidated memories can be distorted to adjust the existing memory base in memory integration. However, only a few studies have demonstrated the role of REM sleep in memory distortion. The present study aims to clarify the role of REM sleep in the facilitation of memory distortion, that is, hindsight bias, compared to non-rapid eye movement (NREM) sleep and wake states. The split-night paradigm was used to segregate REM and NREM sleep. The hypotheses are (1) hindsight bias—memory distortion—is more substantial during REM-rich sleep (late-night sleep) than during NREM-rich sleep (early-night sleep); (2) memory stabilization is more substantial during NREM-rich sleep (early-night sleep) than during REM-rich sleep (late-night sleep); and (3) memory distortion takes longer time than memory stabilization. The results of the hindsight bias test show that more memory distortions were observed after the REM condition in comparison to the NREM condition. Contrary to the hindsight bias, the correct response in the word-pair association test was observed more in the NREM than in the REM condition. The difference in the hindsight bias index between the REM and NREM conditions was identified only one week later. Comparatively, the difference in correct responses in the word-pair association task between the conditions appeared three hours later and one week later. The present study found that (1) memory distortion occurs more during REM-rich sleep than during NREM-rich sleep, while memory stabilization occurs more during NREM-rich sleep than during REM-rich sleep. Moreover, (2) the newly encoded memory could be stabilized immediately after encoding, but memory distortion occurs over several days. These results suggest that the roles of NREM and REM sleep in memory processes could be different.
期刊介绍:
Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.