{"title":"Redox signaling and modulation in ageing.","authors":"Mehmet Can Atayik, Ufuk Çakatay","doi":"10.1007/s10522-023-10055-w","DOIUrl":null,"url":null,"abstract":"<p><p>In spite of considerable progress that has been reached in understanding how reactive oxygen species (ROS) interact with its cellular targets, several important challenges regarding regulatory effects of redox signaling mechanisms remain to be addressed enough in aging and age-related disorders. Redox signaling is precisely regulated in different tissues and subcellular locations. It modulates the homeostatic balance of many regulatory facilities such as cell cycle, circadian rhythms, adapting the external environments, etc. The newly proposed term \"adaptive redox homeostasis\" describes the transient increase in ROS buffering capacity in response to amplified ROS formation rate within a physiological range. Redox-dependent second messengers are generated in subcellular locations according to a specific set of rules and regulations. Their appearance depends on cellular needs in response to variations in external and internal stimulus. The intensity and magnitude of ROS signaling determines its downstream effects. This issue includes review and research papers in the context of redox signaling mechanisms and related redox-regulatory interventions, aiming to guide for understanding the degenerative processes of biological ageing and alleviating possible prevention approaches for age-related complications.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"24 5","pages":"603-608"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-023-10055-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In spite of considerable progress that has been reached in understanding how reactive oxygen species (ROS) interact with its cellular targets, several important challenges regarding regulatory effects of redox signaling mechanisms remain to be addressed enough in aging and age-related disorders. Redox signaling is precisely regulated in different tissues and subcellular locations. It modulates the homeostatic balance of many regulatory facilities such as cell cycle, circadian rhythms, adapting the external environments, etc. The newly proposed term "adaptive redox homeostasis" describes the transient increase in ROS buffering capacity in response to amplified ROS formation rate within a physiological range. Redox-dependent second messengers are generated in subcellular locations according to a specific set of rules and regulations. Their appearance depends on cellular needs in response to variations in external and internal stimulus. The intensity and magnitude of ROS signaling determines its downstream effects. This issue includes review and research papers in the context of redox signaling mechanisms and related redox-regulatory interventions, aiming to guide for understanding the degenerative processes of biological ageing and alleviating possible prevention approaches for age-related complications.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.