{"title":"E2F8 knockdown suppresses cell proliferation and induces cell cycle arrest via Wnt/β-Catenin pathway in ovarian cancer.","authors":"Meiyin Zhang, Ye Xu, Yongjian Zhang, Ge Lou","doi":"10.4103/cjop.CJOP-D-22-00142","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is one of the leading causes of death in female reproductive system cancers. However, the pathogenesis of ovarian cancer remains elusive. Our aim is to investigate the potential targets for ovarian cancer. Two microarray datasets were obtained from the Gene Expression Omnibus public database. Using R package limma, the differentially expressed genes (DEGs) were identified from the datasets. There were 95 overlapping DEGs in two microarray datasets. GO, KEGG pathway analysis, and protein-protein interaction (PPI) network analysis were carried out based on the DEGs. Wnt signaling pathway and cell cycle were enriched in the KEGG pathway analysis. Moreover, the top 10 hub genes with the most nodes were determined by PPI network analysis. E2F8, one of hub genes was positively linked to a bad outcome in ovarian cancer patients. Furthermore, E2F8 knockdown suppressed cell proliferation and induced cell cycle arrest in ovarian cancer. In addition, we found that silencing E2F8 inhibited the Wnt/β-catenin signaling pathway. In ovarian cancer cells with E2F8 knockdown, overexpressing β-catenin restored both the suppressed capacity of cell proliferation and cell cycle progression. Therefore, our results revealed that E2F8 had an involvement in the development of ovarian cancer which might act as a therapeutic target.</p>","PeriodicalId":10251,"journal":{"name":"Chinese Journal of Physiology","volume":"66 4","pages":"266-275"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjop.CJOP-D-22-00142","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Ovarian cancer is one of the leading causes of death in female reproductive system cancers. However, the pathogenesis of ovarian cancer remains elusive. Our aim is to investigate the potential targets for ovarian cancer. Two microarray datasets were obtained from the Gene Expression Omnibus public database. Using R package limma, the differentially expressed genes (DEGs) were identified from the datasets. There were 95 overlapping DEGs in two microarray datasets. GO, KEGG pathway analysis, and protein-protein interaction (PPI) network analysis were carried out based on the DEGs. Wnt signaling pathway and cell cycle were enriched in the KEGG pathway analysis. Moreover, the top 10 hub genes with the most nodes were determined by PPI network analysis. E2F8, one of hub genes was positively linked to a bad outcome in ovarian cancer patients. Furthermore, E2F8 knockdown suppressed cell proliferation and induced cell cycle arrest in ovarian cancer. In addition, we found that silencing E2F8 inhibited the Wnt/β-catenin signaling pathway. In ovarian cancer cells with E2F8 knockdown, overexpressing β-catenin restored both the suppressed capacity of cell proliferation and cell cycle progression. Therefore, our results revealed that E2F8 had an involvement in the development of ovarian cancer which might act as a therapeutic target.
期刊介绍:
Chinese Journal of Physiology is a multidisciplinary open access journal.
Chinese Journal of Physiology (CJP) publishes high quality original research papers in physiology and pathophysiology by authors all over the world. CJP welcomes submitted research papers in all aspects of physiology science in the molecular, cellular, tissue and systemic levels. Multidisciplinary sciences with a focus to understand the role of physiology in health and disease are also encouraged.
Chinese Journal of Physiology accepts fourfold article types: Original Article, Review Article (Mini-Review included), Short Communication, and Editorial. There is no cost for readers to access the full-text contents of publications.