Cell-Derived Extracellular Matrix Fiber Scaffolds Improve Recovery from Volumetric Muscle Loss.

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue Engineering Part A Pub Date : 2024-03-01 Epub Date: 2023-11-21 DOI:10.1089/ten.TEA.2022.0227
Cassandra Reed, Tai Huynh, Jacob Schluns, Payton Phelps, Jamie Hestekin, Jeffrey C Wolchok
{"title":"Cell-Derived Extracellular Matrix Fiber Scaffolds Improve Recovery from Volumetric Muscle Loss.","authors":"Cassandra Reed, Tai Huynh, Jacob Schluns, Payton Phelps, Jamie Hestekin, Jeffrey C Wolchok","doi":"10.1089/ten.TEA.2022.0227","DOIUrl":null,"url":null,"abstract":"<p><p>There are currently no surgical procedures that effectively address the treatment of volumetric muscle loss (VML) injuries that has motivated the development of implantable scaffolding. In this study, the effectiveness of an allogenic scaffold fabricated using fibers built from the extracellular matrix (ECM) collected from muscle fibroblast cells during growth in culture was explored using a hindlimb VML injury (tibialis anterior muscle) in a rat model. Recovery outcomes (8 weeks) were explored in comparison with unrepaired controls as well previously examined allogenic scaffolds prepared from decellularized skeletal muscle (DSM) tissue (<i>n</i> = 9/sample group). At 8-week follow-up, we found that the repair of VML injuries using ECM fiber scaffolds in combination with an autogenic mince muscle (MM) paste significantly improved the recovery of peak contractile torque (79% ± 13% of uninjured contralateral muscle) when compared with unrepaired VML controls (57% ± 13%). Similar significant improvements were measured for muscle mass restoration (93% ± 10%) in response to ECM fiber+MM repair when compared with unrepaired VML controls (73% ± 13%). Of note, mass and contractile strength recovery outcomes for ECM fiber scaffolds were not significantly different from DSM+MM repair controls. These <i>in vivo</i> findings support the further exploration of cell-derived ECM fiber scaffolds as a promising strategy for the repair of VML injury with recovery outcomes that compare favorably with current tissue-sourced ECM scaffolds. Furthermore, although the therapeutic potential of ECM fibers as a treatment strategy for muscle injury was explored in this study, they could be adapted for high-throughput fabrication methods developed and routinely used by the textile industry to create a broad range of woven implants (e.g., hernia meshes) for even greater clinical impact.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2022.0227","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

There are currently no surgical procedures that effectively address the treatment of volumetric muscle loss (VML) injuries that has motivated the development of implantable scaffolding. In this study, the effectiveness of an allogenic scaffold fabricated using fibers built from the extracellular matrix (ECM) collected from muscle fibroblast cells during growth in culture was explored using a hindlimb VML injury (tibialis anterior muscle) in a rat model. Recovery outcomes (8 weeks) were explored in comparison with unrepaired controls as well previously examined allogenic scaffolds prepared from decellularized skeletal muscle (DSM) tissue (n = 9/sample group). At 8-week follow-up, we found that the repair of VML injuries using ECM fiber scaffolds in combination with an autogenic mince muscle (MM) paste significantly improved the recovery of peak contractile torque (79% ± 13% of uninjured contralateral muscle) when compared with unrepaired VML controls (57% ± 13%). Similar significant improvements were measured for muscle mass restoration (93% ± 10%) in response to ECM fiber+MM repair when compared with unrepaired VML controls (73% ± 13%). Of note, mass and contractile strength recovery outcomes for ECM fiber scaffolds were not significantly different from DSM+MM repair controls. These in vivo findings support the further exploration of cell-derived ECM fiber scaffolds as a promising strategy for the repair of VML injury with recovery outcomes that compare favorably with current tissue-sourced ECM scaffolds. Furthermore, although the therapeutic potential of ECM fibers as a treatment strategy for muscle injury was explored in this study, they could be adapted for high-throughput fabrication methods developed and routinely used by the textile industry to create a broad range of woven implants (e.g., hernia meshes) for even greater clinical impact.

细胞来源的细胞外基质纤维支架促进体积性肌肉损失的恢复。
目前还没有外科手术可以有效地解决体积性肌肉损失(VML)损伤的治疗,这促使了植入式支架的发展。在这项研究中,利用培养过程中从肌肉成纤维细胞中收集的细胞外基质(ECM)构建的纤维制成的同种异体支架的有效性,在大鼠后肢VML损伤(胫骨前肌)模型中进行了探索。将恢复结果(8周)与未修复的对照组以及先前研究的从去细胞骨骼肌(DSM)组织制备的同种异体支架(n = 9/样本组)进行比较。在8周的随访中,我们发现,与未修复的VML对照组(57%±13%)相比,使用ECM纤维支架联合自体肉末肌(MM)糊剂修复VML损伤可显著提高峰值收缩扭矩的恢复(79%±13%)。与未修复的VML对照组(73%±13%)相比,ECM纤维+MM修复组肌肉质量恢复(93%±10%)也有类似的显著改善。值得注意的是,ECM纤维支架的质量和收缩强度恢复结果与DSM+MM修复对照组没有显著差异。这些体内研究结果支持进一步探索细胞源性ECM纤维支架作为修复VML损伤的有希望的策略,其恢复结果优于当前组织源性ECM支架。此外,尽管本研究探索了ECM纤维作为肌肉损伤治疗策略的治疗潜力,但它们可以适用于纺织工业开发并常规使用的高吞吐量制造方法,以制造各种编织植入物(例如疝网),从而获得更大的临床效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信