{"title":"RNA Management During T7 Infection.","authors":"Aline Tabib-Salazar, Sivaramesh Wigneshweraraj","doi":"10.1089/phage.2022.0029","DOIUrl":null,"url":null,"abstract":"<p><p>Post-transcriptional regulation (PTR) determines the fate of RNA in the cell and represents an important control point in the flow of genetic information and thus underpins many, if not all, aspects of cell function. Host takeover by phages through misappropriation of the bacterial transcription machinery is a relatively advanced area of research. However, several phages encode small regulatory RNAs, which are major mediators of PTR, and produce specific proteins to manipulate bacterial enzymes involved in RNA degradation.<sup>1-4</sup> However, PTR during phage development still represents an understudied area of phage-bacteria interaction biology. In this study, we discuss the potential role PTR could play in determining the fate of RNA during the lifecycle of the prototypic phage T7 in <i>Escherichia coli</i>.</p>","PeriodicalId":74428,"journal":{"name":"PHAGE (New Rochelle, N.Y.)","volume":"3 3","pages":"136-140"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917321/pdf/phage.2022.0029.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHAGE (New Rochelle, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/phage.2022.0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Post-transcriptional regulation (PTR) determines the fate of RNA in the cell and represents an important control point in the flow of genetic information and thus underpins many, if not all, aspects of cell function. Host takeover by phages through misappropriation of the bacterial transcription machinery is a relatively advanced area of research. However, several phages encode small regulatory RNAs, which are major mediators of PTR, and produce specific proteins to manipulate bacterial enzymes involved in RNA degradation.1-4 However, PTR during phage development still represents an understudied area of phage-bacteria interaction biology. In this study, we discuss the potential role PTR could play in determining the fate of RNA during the lifecycle of the prototypic phage T7 in Escherichia coli.