Characterizing Sampling Variability for Item Response Theory Scale Scores in a Fixed-Parameter Calibrated Projection Design.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Shuangshuang Xu, Yang Liu
{"title":"Characterizing Sampling Variability for Item Response Theory Scale Scores in a Fixed-Parameter Calibrated Projection Design.","authors":"Shuangshuang Xu,&nbsp;Yang Liu","doi":"10.1177/01466216221108136","DOIUrl":null,"url":null,"abstract":"<p><p>A common practice of linking uses estimated item parameters to calculate projected scores. This procedure fails to account for the carry-over sampling variability. Neglecting sampling variability could consequently lead to understated uncertainty for Item Response Theory (IRT) scale scores. To address the issue, we apply a Multiple Imputation (MI) approach to adjust the Posterior Standard Deviations of IRT scale scores. The MI procedure involves drawing multiple sets of plausible values from an approximate sampling distribution of the estimated item parameters. When two scales to be linked were previously calibrated, item parameters can be fixed at their original published scales, and the latent variable means and covariances of the two scales can then be estimated conditional on the fixed item parameters. The conditional estimation procedure is a special case of Restricted Recalibration (RR), in which the asymptotic sampling distribution of estimated parameters follows from the general theory of pseudo Maximum Likelihood (ML) estimation. We evaluate the combination of RR and MI by a simulation study to examine the impact of carry-over sampling variability under various simulation conditions. We also illustrate how to apply the proposed method to real data by revisiting Thissen et al. (2015).</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382091/pdf/10.1177_01466216221108136.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221108136","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A common practice of linking uses estimated item parameters to calculate projected scores. This procedure fails to account for the carry-over sampling variability. Neglecting sampling variability could consequently lead to understated uncertainty for Item Response Theory (IRT) scale scores. To address the issue, we apply a Multiple Imputation (MI) approach to adjust the Posterior Standard Deviations of IRT scale scores. The MI procedure involves drawing multiple sets of plausible values from an approximate sampling distribution of the estimated item parameters. When two scales to be linked were previously calibrated, item parameters can be fixed at their original published scales, and the latent variable means and covariances of the two scales can then be estimated conditional on the fixed item parameters. The conditional estimation procedure is a special case of Restricted Recalibration (RR), in which the asymptotic sampling distribution of estimated parameters follows from the general theory of pseudo Maximum Likelihood (ML) estimation. We evaluate the combination of RR and MI by a simulation study to examine the impact of carry-over sampling variability under various simulation conditions. We also illustrate how to apply the proposed method to real data by revisiting Thissen et al. (2015).

固定参数校准投影设计中项目反应理论量表得分的抽样变异性特征。
链接的一个常见做法是使用估计的项目参数来计算预测分数。该程序未能考虑到结转抽样的可变性。忽略抽样变异性可能导致项目反应理论(IRT)量表得分的不确定性被低估。为了解决这个问题,我们采用了多重插值(MI)方法来调整IRT量表得分的后验标准差。MI过程包括从估计项目参数的近似抽样分布中绘制多组可信值。当两个待连接的量表先前已校准后,可以将项目参数固定在其原始公布的量表上,然后可以根据固定的项目参数估计两个量表的潜变量均值和协方差。条件估计过程是限制重校准(RR)的一种特殊情况,其估计参数的渐近抽样分布遵循伪极大似然估计的一般理论。我们通过模拟研究来评估RR和MI的组合,以检查在各种模拟条件下携带抽样变异性的影响。我们还通过重新访问Thissen等人(2015)来说明如何将所提出的方法应用于实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信