Biologically Interpretable Deep Learning To Predict Response to Immunotherapy In Advanced Melanoma Using Mutations and Copy Number Variations.

IF 3.2 4区 医学 Q3 IMMUNOLOGY
Liuchao Zhang, Lei Cao, Shuang Li, Liuying Wang, Yongzhen Song, Yue Huang, Zhenyi Xu, Jia He, Meng Wang, Kang Li
{"title":"Biologically Interpretable Deep Learning To Predict Response to Immunotherapy In Advanced Melanoma Using Mutations and Copy Number Variations.","authors":"Liuchao Zhang,&nbsp;Lei Cao,&nbsp;Shuang Li,&nbsp;Liuying Wang,&nbsp;Yongzhen Song,&nbsp;Yue Huang,&nbsp;Zhenyi Xu,&nbsp;Jia He,&nbsp;Meng Wang,&nbsp;Kang Li","doi":"10.1097/CJI.0000000000000475","DOIUrl":null,"url":null,"abstract":"<p><p>Only 30-40% of advanced melanoma patients respond effectively to immunotherapy in clinical practice, so it is necessary to accurately identify the response of patients to immunotherapy pre-clinically. Here, we develop KP-NET, a deep learning model that is sparse on KEGG pathways, and combine it with transfer- learning to accurately predict the response of advanced melanomas to immunotherapy using KEGG pathway-level information enriched from gene mutation and copy number variation data. The KP-NET demonstrates best performance with AUROC of 0.886 on testing set and 0.803 on an unseen evaluation set when predicting responders (CR/PR/SD with PFS ≥6 mo) versus non-responders (PD/SD with PFS <6 mo) in anti-CTLA-4 treated melanoma patients. The model also achieves an AUROC of 0.917 and 0.833 in predicting CR/PR versus PD, respectively. Meanwhile, the AUROC is 0.913 when predicting responders versus non-responders in anti-PD-1/PD-L1 melanomas. Moreover, the KP-NET reveals some genes and pathways associated with response to anti-CTLA-4 treatment, such as genes PIK3CA, AOX1 and CBLB, and ErbB signaling pathway, T cell receptor signaling pathway, et al. In conclusion, the KP-NET can accurately predict the response of melanomas to immunotherapy and screen related biomarkers pre-clinically, which can contribute to precision medicine of melanoma.</p>","PeriodicalId":15996,"journal":{"name":"Journal of Immunotherapy","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CJI.0000000000000475","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Only 30-40% of advanced melanoma patients respond effectively to immunotherapy in clinical practice, so it is necessary to accurately identify the response of patients to immunotherapy pre-clinically. Here, we develop KP-NET, a deep learning model that is sparse on KEGG pathways, and combine it with transfer- learning to accurately predict the response of advanced melanomas to immunotherapy using KEGG pathway-level information enriched from gene mutation and copy number variation data. The KP-NET demonstrates best performance with AUROC of 0.886 on testing set and 0.803 on an unseen evaluation set when predicting responders (CR/PR/SD with PFS ≥6 mo) versus non-responders (PD/SD with PFS <6 mo) in anti-CTLA-4 treated melanoma patients. The model also achieves an AUROC of 0.917 and 0.833 in predicting CR/PR versus PD, respectively. Meanwhile, the AUROC is 0.913 when predicting responders versus non-responders in anti-PD-1/PD-L1 melanomas. Moreover, the KP-NET reveals some genes and pathways associated with response to anti-CTLA-4 treatment, such as genes PIK3CA, AOX1 and CBLB, and ErbB signaling pathway, T cell receptor signaling pathway, et al. In conclusion, the KP-NET can accurately predict the response of melanomas to immunotherapy and screen related biomarkers pre-clinically, which can contribute to precision medicine of melanoma.

利用突变和拷贝数变异,生物学上可解释的深度学习预测晚期黑色素瘤免疫治疗的反应。
在临床实践中,只有30-40%的晚期黑色素瘤患者对免疫治疗有效,因此有必要在临床前准确识别患者对免疫治疗的反应。在这里,我们开发了KP-NET,这是一种深度学习模型,它在KEGG通路上是稀疏的,并将其与迁移学习相结合,利用丰富的基因突变和拷贝数变异数据的KEGG通路水平信息,准确预测晚期黑色素瘤对免疫治疗的反应。在预测反应者(PFS≥6个月的CR/PR/SD)与无反应者(PFS的PD/SD)相比,KP-NET在测试集上的AUROC为0.886,在未知评估集上的AUROC为0.803
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Immunotherapy
Journal of Immunotherapy 医学-免疫学
CiteScore
6.90
自引率
0.00%
发文量
79
审稿时长
6-12 weeks
期刊介绍: Journal of Immunotherapy features rapid publication of articles on immunomodulators, lymphokines, antibodies, cells, and cell products in cancer biology and therapy. Laboratory and preclinical studies, as well as investigative clinical reports, are presented. The journal emphasizes basic mechanisms and methods for the rapid transfer of technology from the laboratory to the clinic. JIT contains full-length articles, review articles, and short communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信