The Current Limitations and Advanced Analysis of Hemodynamic Study of Cerebral Aneurysms.

IF 1.2 Q4 CLINICAL NEUROLOGY
Kwang-Chun Cho
{"title":"The Current Limitations and Advanced Analysis of Hemodynamic Study of Cerebral Aneurysms.","authors":"Kwang-Chun Cho","doi":"10.5469/neuroint.2023.00164","DOIUrl":null,"url":null,"abstract":"<p><p>Among the various perspectives on cerebrovascular diseases, hemodynamic analysis-which has recently garnered interest-is of great help in understanding cerebrovascular diseases. Computational fluid dynamics (CFD) analysis has been the primary hemodynamic analysis method, and studies on cerebral aneurysms have been actively conducted. However, owing to the intrinsic limitations of the analysis method, the role of wall shear stress (WSS), the most representative parameter, remains controversial. High WSS affects the formation of cerebral aneurysms; however, no consensus has been reached on the role of WSS in the growth and rupture of cerebral aneurysms. Therefore, this review aimed to briefly introduce the up-to-date results and limitations made through CFD analysis and to inform the need for a new hemodynamic analysis method.</p>","PeriodicalId":19140,"journal":{"name":"Neurointervention","volume":"18 2","pages":"107-113"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/57/bb/neuroint-2023-00164.PMC10318229.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurointervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5469/neuroint.2023.00164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Among the various perspectives on cerebrovascular diseases, hemodynamic analysis-which has recently garnered interest-is of great help in understanding cerebrovascular diseases. Computational fluid dynamics (CFD) analysis has been the primary hemodynamic analysis method, and studies on cerebral aneurysms have been actively conducted. However, owing to the intrinsic limitations of the analysis method, the role of wall shear stress (WSS), the most representative parameter, remains controversial. High WSS affects the formation of cerebral aneurysms; however, no consensus has been reached on the role of WSS in the growth and rupture of cerebral aneurysms. Therefore, this review aimed to briefly introduce the up-to-date results and limitations made through CFD analysis and to inform the need for a new hemodynamic analysis method.

Abstract Image

Abstract Image

Abstract Image

脑动脉瘤血流动力学研究的局限性及进展分析。
在脑血管疾病的各种观点中,血液动力学分析对脑血管疾病的认识有很大的帮助,近年来引起了人们的兴趣。计算流体动力学(CFD)分析已成为主要的血流动力学分析方法,对脑动脉瘤的研究已得到积极开展。然而,由于分析方法的固有局限性,最具代表性的墙体剪切应力(WSS)的作用仍然存在争议。高WSS影响脑动脉瘤的形成;然而,WSS在脑动脉瘤生长和破裂中的作用尚未达成共识。因此,本文旨在简要介绍CFD分析的最新结果和局限性,并告知需要一种新的血流动力学分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
34
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信