{"title":"SEEG-RF for revealing and treating Geschwind syndrome's epileptic network: A case study","authors":"Mikael Levy , Maya Weinstein , Alexie Mirson , Sandi Madar , Mordechai Lorberboym , Nir Getter , Moshe Zer-Zion , Jehuda Sepkuty","doi":"10.1016/j.ebr.2023.100617","DOIUrl":null,"url":null,"abstract":"<div><p>Stereotypic neural networks are repeatedly activated in drug-refractory epilepsies (DRE), reinforcing the expression of certain psycho-affective traits. Geschwind syndrome (GS) can serve as a model for such phenomena among patients with temporal lobe DRE. We describe stereo-electroencephalogram (SEEG) exploration in a 34-year-old male with DRE and GS, and his treatment by SEEG-radiofrequency (SEEG-RF) ablation. We hypothesized that this approach could reveal the underlying epileptic network and map eloquent faculties adjacent to SEEG-RF targets, which can be further used to disintegrate the epileptic network. The patient underwent a multi-modal pre-surgical evaluation consisting of video EEG (VEEG), EEG source localization, 18-fluorodexyglucose-PET/MRI, neuropsychological and psychiatric assessments. Pre-surgical multi-modal analyses suggested a T4-centered seizure onset zone. SEEG further localized the SOZ within the right amygdalo-hippocampal region and temporal neocortex, with the right parieto-temporal region as the propagation zone. SEEG-RF ablation under awake conditions and continuous EEG monitoring confirmed the abolishment of epileptic activity. Follow-up at 20 months showed seizure suppression (Engel 1A/ILEA 1) and a significantly improved and stable psycho-affective state. To the best of our knowledge this is the first description of the intracranial biomarkers of GS and its further treatment through SEEG-RF ablation within the scope of DRE.</p></div>","PeriodicalId":36558,"journal":{"name":"Epilepsy and Behavior Reports","volume":"24 ","pages":"Article 100617"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/a0/main.PMC10462843.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy and Behavior Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589986423000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stereotypic neural networks are repeatedly activated in drug-refractory epilepsies (DRE), reinforcing the expression of certain psycho-affective traits. Geschwind syndrome (GS) can serve as a model for such phenomena among patients with temporal lobe DRE. We describe stereo-electroencephalogram (SEEG) exploration in a 34-year-old male with DRE and GS, and his treatment by SEEG-radiofrequency (SEEG-RF) ablation. We hypothesized that this approach could reveal the underlying epileptic network and map eloquent faculties adjacent to SEEG-RF targets, which can be further used to disintegrate the epileptic network. The patient underwent a multi-modal pre-surgical evaluation consisting of video EEG (VEEG), EEG source localization, 18-fluorodexyglucose-PET/MRI, neuropsychological and psychiatric assessments. Pre-surgical multi-modal analyses suggested a T4-centered seizure onset zone. SEEG further localized the SOZ within the right amygdalo-hippocampal region and temporal neocortex, with the right parieto-temporal region as the propagation zone. SEEG-RF ablation under awake conditions and continuous EEG monitoring confirmed the abolishment of epileptic activity. Follow-up at 20 months showed seizure suppression (Engel 1A/ILEA 1) and a significantly improved and stable psycho-affective state. To the best of our knowledge this is the first description of the intracranial biomarkers of GS and its further treatment through SEEG-RF ablation within the scope of DRE.