H3K27 acetylation-induced FSTL1 upregulation by P300/RUNX1 co-activation exacerbated autophagy-mediated neuronal damage and NF-κB-stimulated inflammation in Alzheimer's disease.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2023-10-01 Epub Date: 2023-08-04 DOI:10.1007/s10616-023-00589-9
Dongmei Dai, Junzheng Xie, Yun Zheng, Fangbin Chen, Bin Zhao, Li Miao
{"title":"H3K27 acetylation-induced FSTL1 upregulation by P300/RUNX1 co-activation exacerbated autophagy-mediated neuronal damage and NF-κB-stimulated inflammation in Alzheimer's disease.","authors":"Dongmei Dai, Junzheng Xie, Yun Zheng, Fangbin Chen, Bin Zhao, Li Miao","doi":"10.1007/s10616-023-00589-9","DOIUrl":null,"url":null,"abstract":"<p><p>Follistatin-like protein 1 (FSTL1) has been demonstrated to participate in the pathogenesis of several neurological diseases. The current study informed the role of H3K27 acetylation-induced FSTL1 upregulation in Alzheimer's disease (AD). Our investigation discovered the upregulated FSTL1 expression and enhanced autophagy activity in AD. FSTL1 knockdown successfully attenuated the injuries of Aβ<sub>1-42</sub>-challenged SH-SY5Y cells through the inhibition of autophagy activity. Besides, FSTL1 deficiency suppresses the inflammatory response and NF-κB signaling in AD. Moreover, it was found that p300 was recruited by transcriptional factor RUNX1 to stimulate the H3K27 acetylation in FSTL1 promoter region, which caused the upregulation of FSTL1 in AD. To summarize, p300 acted as a co-activator of RUNX1 to trigger the activation of FSTL1 in AD, resulting in the exacerbated injuries and inflammatory responses of Aβ<sub>1-42</sub>-induced SH-SY5Y cells.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 5","pages":"449-460"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00589-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Follistatin-like protein 1 (FSTL1) has been demonstrated to participate in the pathogenesis of several neurological diseases. The current study informed the role of H3K27 acetylation-induced FSTL1 upregulation in Alzheimer's disease (AD). Our investigation discovered the upregulated FSTL1 expression and enhanced autophagy activity in AD. FSTL1 knockdown successfully attenuated the injuries of Aβ1-42-challenged SH-SY5Y cells through the inhibition of autophagy activity. Besides, FSTL1 deficiency suppresses the inflammatory response and NF-κB signaling in AD. Moreover, it was found that p300 was recruited by transcriptional factor RUNX1 to stimulate the H3K27 acetylation in FSTL1 promoter region, which caused the upregulation of FSTL1 in AD. To summarize, p300 acted as a co-activator of RUNX1 to trigger the activation of FSTL1 in AD, resulting in the exacerbated injuries and inflammatory responses of Aβ1-42-induced SH-SY5Y cells.

Abstract Image

H3K27乙酰化诱导的FSTL1通过P300/RUNX1共激活上调,加剧了阿尔茨海默病中自噬介导的神经元损伤和NF-κB刺激的炎症。
卵泡抑素样蛋白1(FSTL1)已被证明参与多种神经系统疾病的发病机制。目前的研究揭示了H3K27乙酰化诱导的FSTL1上调在阿尔茨海默病(AD)中的作用。我们的研究发现AD中FSTL1的表达上调并增强了自噬活性。FSTL1敲低通过抑制自噬活性成功减轻了Aβ1-42-激发的SH-SY5Y细胞的损伤。此外,FSTL1缺乏抑制AD的炎症反应和NF-κB信号传导。此外,研究发现p300被转录因子RUNX1募集,刺激FSTL1启动子区的H3K27乙酰化,从而导致AD中FSTL1的上调。总之,p300作为RUNX1的共激活剂,触发AD中FSTL 1的激活,导致Aβ1-42诱导的SH-SY5Y细胞的损伤和炎症反应加剧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信