Arianna Ericka Gómez, Sumaya Addish, Kurtis Alvarado, Priscilla Boatemaa, Anne C Onyali, Emily G Ramirez, Maria F Rojas, Jyoti Rai, Kiana A Reynolds, W Joyce Tang, Ronald Young Kwon
{"title":"Multiple Mechanisms Explain Genetic Effects at the CPED1-WNT16 Bone Mineral Density Locus.","authors":"Arianna Ericka Gómez, Sumaya Addish, Kurtis Alvarado, Priscilla Boatemaa, Anne C Onyali, Emily G Ramirez, Maria F Rojas, Jyoti Rai, Kiana A Reynolds, W Joyce Tang, Ronald Young Kwon","doi":"10.1007/s11914-023-00783-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Chromosome region 7q31.31, also known as the CPED1-WNT16 locus, is robustly associated with BMD and fracture risk. The aim of the review is to highlight experimental studies examining the function of genes at the CPED1-WNT16 locus.</p><p><strong>Recent findings: </strong>Genes that reside at the CPED1-WNT16 locus include WNT16, FAM3C, ING3, CPED1, and TSPAN12. Experimental studies in mice strongly support the notion that Wnt16 is necessary for bone mass and strength. In addition, roles for Fam3c and Ing3 in regulating bone morphology in vivo and/or osteoblast differentiation in vitro have been identified. Finally, a role for wnt16 in dually influencing bone and muscle morphogenesis in zebrafish has recently been discovered, which has brought forth new questions related to whether the influence of WNT16 in muscle may conspire with its influence in bone to alter BMD and fracture risk.</p>","PeriodicalId":11080,"journal":{"name":"Current Osteoporosis Reports","volume":"21 2","pages":"173-183"},"PeriodicalIF":4.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202127/pdf/nihms-1894552.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Osteoporosis Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11914-023-00783-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Chromosome region 7q31.31, also known as the CPED1-WNT16 locus, is robustly associated with BMD and fracture risk. The aim of the review is to highlight experimental studies examining the function of genes at the CPED1-WNT16 locus.
Recent findings: Genes that reside at the CPED1-WNT16 locus include WNT16, FAM3C, ING3, CPED1, and TSPAN12. Experimental studies in mice strongly support the notion that Wnt16 is necessary for bone mass and strength. In addition, roles for Fam3c and Ing3 in regulating bone morphology in vivo and/or osteoblast differentiation in vitro have been identified. Finally, a role for wnt16 in dually influencing bone and muscle morphogenesis in zebrafish has recently been discovered, which has brought forth new questions related to whether the influence of WNT16 in muscle may conspire with its influence in bone to alter BMD and fracture risk.
期刊介绍:
This journal intends to provide clear, insightful, balanced contributions by international experts that review the most important, recently published clinical findings related to the diagnosis, treatment, management, and prevention of osteoporosis.
We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas, such as current and future therapeutics, epidemiology and pathophysiology, and evaluation and management. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also provided.