{"title":"Numerical Study of a Thrombus Migration Risk in Aneurysm After Coil Embolization in Patient Cases: FSI Modelling.","authors":"C Paz, E Suárez, A Cabarcos, S I S Pinto","doi":"10.1007/s13239-023-00672-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>There are still many challenges for modelling a thrombus migration process in aneurysms. The main novelty of the present research lies in the modelling of aneurysm clot migration process in a realistic cerebral aneurysm, and the analysis of forces suffered by clots inside an aneurysm, through transient FSI simulations.</p><p><strong>Methods: </strong>The blood flow has been modelled using a Womersley velocity profile, and following the Carreau viscosity model. Hyperelastic Ogden model has been used for clot and isotropic linear elastic model for the artery walls. The FSI coupled model was implemented in ANSYS® software. The hemodynamic forces suffered by the clot have been quantified using eight different clot sizes and positions inside a real aneurysm.</p><p><strong>Results: </strong>The obtained results have shown that it is almost impossible for clots adjacent to aneurysm walls, to leave the aneurysm. Nevertheless, in clots positioned in the centre of the aneurysm, there is a real risk of clot migration. The risk of migration of a typical post-coiling intervention clot in an aneurysm, in contact with the wall and occupying a significant percentage of its volume is very low in the case studied, even in the presence of abnormally intense events, associated with sneezes or impacts.</p><p><strong>Conclusions: </strong>The proposed methodology allows evaluating the clot migration risk, vital for evaluating the progress after endovascular interventions, it is a step forward in the personalized medicine, patient follow-up, and helping the medical team deciding the optimal treatment.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":"14 4","pages":"544-559"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-023-00672-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: There are still many challenges for modelling a thrombus migration process in aneurysms. The main novelty of the present research lies in the modelling of aneurysm clot migration process in a realistic cerebral aneurysm, and the analysis of forces suffered by clots inside an aneurysm, through transient FSI simulations.
Methods: The blood flow has been modelled using a Womersley velocity profile, and following the Carreau viscosity model. Hyperelastic Ogden model has been used for clot and isotropic linear elastic model for the artery walls. The FSI coupled model was implemented in ANSYS® software. The hemodynamic forces suffered by the clot have been quantified using eight different clot sizes and positions inside a real aneurysm.
Results: The obtained results have shown that it is almost impossible for clots adjacent to aneurysm walls, to leave the aneurysm. Nevertheless, in clots positioned in the centre of the aneurysm, there is a real risk of clot migration. The risk of migration of a typical post-coiling intervention clot in an aneurysm, in contact with the wall and occupying a significant percentage of its volume is very low in the case studied, even in the presence of abnormally intense events, associated with sneezes or impacts.
Conclusions: The proposed methodology allows evaluating the clot migration risk, vital for evaluating the progress after endovascular interventions, it is a step forward in the personalized medicine, patient follow-up, and helping the medical team deciding the optimal treatment.
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.