The molecular evolution of mammalian spermatogenesis

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Nils Trost , Noe Mbengue , Henrik Kaessmann
{"title":"The molecular evolution of mammalian spermatogenesis","authors":"Nils Trost ,&nbsp;Noe Mbengue ,&nbsp;Henrik Kaessmann","doi":"10.1016/j.cdev.2023.203865","DOIUrl":null,"url":null,"abstract":"<div><p><span>The testis is a key male reproductive organ that produces gametes<span> through the process of spermatogenesis<span>. Testis morphologies, sperm phenotypes, and the process of spermatogenesis evolve rapidly in mammals, presumably due to the evolutionary pressure on males to give rise to their own offspring. Here, we review studies illuminating the molecular evolution<span> of the testis, in particular large-scale transcriptomic studies, which were based on bulk tissue samples and, more recently, individual cells. Together with various genomic and </span></span></span></span>epigenomic<span> data, these studies have unveiled the cellular source, molecular mechanisms, and evolutionary forces that underlie the rapid phenotypic evolution of the testis. They also revealed shared (ancestral) and species-specific spermatogenic gene expression programs. The insights and available data that have accumulated also provide a valuable resource for the investigation and treatment of male fertility disorders – a dramatically increasing problem in modern industrial societies.</span></p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"175 ","pages":"Article 203865"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290123000414","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The testis is a key male reproductive organ that produces gametes through the process of spermatogenesis. Testis morphologies, sperm phenotypes, and the process of spermatogenesis evolve rapidly in mammals, presumably due to the evolutionary pressure on males to give rise to their own offspring. Here, we review studies illuminating the molecular evolution of the testis, in particular large-scale transcriptomic studies, which were based on bulk tissue samples and, more recently, individual cells. Together with various genomic and epigenomic data, these studies have unveiled the cellular source, molecular mechanisms, and evolutionary forces that underlie the rapid phenotypic evolution of the testis. They also revealed shared (ancestral) and species-specific spermatogenic gene expression programs. The insights and available data that have accumulated also provide a valuable resource for the investigation and treatment of male fertility disorders – a dramatically increasing problem in modern industrial societies.

Abstract Image

Abstract Image

Abstract Image

哺乳动物精子发生的分子进化
睾丸是男性重要的生殖器官,通过精子发生过程产生配子。哺乳动物的睾丸形态、精子表型和精子发生过程迅速进化,可能是由于雄性产生自己后代的进化压力。在这里,我们回顾了阐明睾丸分子进化的研究,特别是基于大量组织样本和最近的单个细胞的大规模转录组学研究。结合各种基因组和表观基因组数据,这些研究揭示了睾丸快速表型进化的细胞来源、分子机制和进化力。他们还揭示了共同的(祖先的)和物种特异性的生精基因表达程序。积累的见解和现有数据也为男性生育障碍的调查和治疗提供了宝贵的资源,这是现代工业社会中一个日益严重的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信