Denis Depes, Ari Mennander, Rauha Vehniäinen, Timo Paavonen, Ivana Kholová
{"title":"Human Pulmonary Vein Myocardial Sleeve Autonomic Neural Density and Cardiovascular Mortality.","authors":"Denis Depes, Ari Mennander, Rauha Vehniäinen, Timo Paavonen, Ivana Kholová","doi":"10.1369/00221554221129899","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial sleeves around pulmonary veins (PVs) are highly innervated structures with heterogeneous morphological and electrophysiological characteristics. Autonomic nerve dysfunction in the myocardium may be associated with an increased risk of cardiovascular morbidity and mortality. This article studied autonomic neural remodeling in myocardial sleeves around PVs and atrial-PV ostia with immunohistochemical and morphometric methods with clinicopathological correlations. PVs were collected from 37 and atrial-PV ostia from 17 human autopsy hearts. Immunohistochemical analysis was performed using antibodies against tyrosine hydroxylase (TH), choline acetyltransferase (CHAT), and growth-associated protein 43 (GAP43). In the PV cohort, subjects with immediate cardiovascular cause of death had significantly decreased sympathetic nerve density in fibro-fatty tissue vs those with non-cardiovascular cause of death (1624.53 vs 2522.05 µm<sup>2</sup>/mm<sup>2</sup>, <i>p</i>=0.038). In the atrial-PV ostia cohort, parasympathetic nerve density in myocardial sleeves was significantly increased in subjects with underlying cardiovascular cause of death (19.48 µm<sup>2</sup>/mm<sup>2</sup>) than subjects with underlying non-cardiovascular cause of death with no parasympathetic nerves detected (<i>p</i>=0.034). Neural growth regionally varied in sympathetic nerves and was present in most of the parasympathetic nerves. Heterogeneous autonomic nerve distribution and growth around PVs and atrial-PV ostia might play a role in cardiovascular morbidity and mortality. No association in nerve density was found with atrial fibrillation.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":"70 9","pages":"627-642"},"PeriodicalIF":1.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527475/pdf/10.1369_00221554221129899.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Histochemistry & Cytochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1369/00221554221129899","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial sleeves around pulmonary veins (PVs) are highly innervated structures with heterogeneous morphological and electrophysiological characteristics. Autonomic nerve dysfunction in the myocardium may be associated with an increased risk of cardiovascular morbidity and mortality. This article studied autonomic neural remodeling in myocardial sleeves around PVs and atrial-PV ostia with immunohistochemical and morphometric methods with clinicopathological correlations. PVs were collected from 37 and atrial-PV ostia from 17 human autopsy hearts. Immunohistochemical analysis was performed using antibodies against tyrosine hydroxylase (TH), choline acetyltransferase (CHAT), and growth-associated protein 43 (GAP43). In the PV cohort, subjects with immediate cardiovascular cause of death had significantly decreased sympathetic nerve density in fibro-fatty tissue vs those with non-cardiovascular cause of death (1624.53 vs 2522.05 µm2/mm2, p=0.038). In the atrial-PV ostia cohort, parasympathetic nerve density in myocardial sleeves was significantly increased in subjects with underlying cardiovascular cause of death (19.48 µm2/mm2) than subjects with underlying non-cardiovascular cause of death with no parasympathetic nerves detected (p=0.034). Neural growth regionally varied in sympathetic nerves and was present in most of the parasympathetic nerves. Heterogeneous autonomic nerve distribution and growth around PVs and atrial-PV ostia might play a role in cardiovascular morbidity and mortality. No association in nerve density was found with atrial fibrillation.
期刊介绍:
Journal of Histochemistry & Cytochemistry (JHC) has been a pre-eminent cell biology journal for over 50 years. Published monthly, JHC offers primary research articles, timely reviews, editorials, and perspectives on the structure and function of cells, tissues, and organs, as well as mechanisms of development, differentiation, and disease. JHC also publishes new developments in microscopy and imaging, especially where imaging techniques complement current genetic, molecular and biochemical investigations of cell and tissue function. JHC offers generous space for articles and recognizing the value of images that reveal molecular, cellular and tissue organization, offers free color to all authors.