Weijie Zhang, He Jin, Shitong Lou, Haowei Yang, Xiaoyong Dai, Shaohua Ma
{"title":"Microfluidic droplet encapsulation-guided organoid growth promotes parental tumor phenotype recapitulation","authors":"Weijie Zhang, He Jin, Shitong Lou, Haowei Yang, Xiaoyong Dai, Shaohua Ma","doi":"10.1002/ijc.34706","DOIUrl":null,"url":null,"abstract":"<p>Patient-derived organoids are gaining incremental popularity in both basic sciences and translational applications toward precision medicine and revolutionized drug discovery. However, for tumor organoids, challenges remain in low rates of organoid growth and tumor cell purity, that is, recapitulation of tumor phenotypes in constructed organoids. Here, we report a method of microfluidic droplet encapsulation that provides structural guidance for tumor cell growth and organization, where they develop into tumor organoids with high purity and high rates of modeling success, as compared to the classical organoid modeling method, that is, non-engineered organoids. The modeling efficacy and organoid quality are examined in patient-derived samples, covering esophagus, lung and colorectal cancer tissues, all proving significance in droplet-engineered organoids, as demonstrated by histological examinations.</p>","PeriodicalId":180,"journal":{"name":"International Journal of Cancer","volume":"154 1","pages":"145-154"},"PeriodicalIF":5.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijc.34706","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patient-derived organoids are gaining incremental popularity in both basic sciences and translational applications toward precision medicine and revolutionized drug discovery. However, for tumor organoids, challenges remain in low rates of organoid growth and tumor cell purity, that is, recapitulation of tumor phenotypes in constructed organoids. Here, we report a method of microfluidic droplet encapsulation that provides structural guidance for tumor cell growth and organization, where they develop into tumor organoids with high purity and high rates of modeling success, as compared to the classical organoid modeling method, that is, non-engineered organoids. The modeling efficacy and organoid quality are examined in patient-derived samples, covering esophagus, lung and colorectal cancer tissues, all proving significance in droplet-engineered organoids, as demonstrated by histological examinations.
期刊介绍:
The International Journal of Cancer (IJC) is the official journal of the Union for International Cancer Control—UICC; it appears twice a month. IJC invites submission of manuscripts under a broad scope of topics relevant to experimental and clinical cancer research and publishes original Research Articles and Short Reports under the following categories:
-Cancer Epidemiology-
Cancer Genetics and Epigenetics-
Infectious Causes of Cancer-
Innovative Tools and Methods-
Molecular Cancer Biology-
Tumor Immunology and Microenvironment-
Tumor Markers and Signatures-
Cancer Therapy and Prevention