How brain ‘cleaners’ fail: Mechanisms and therapeutic value of microglial phagocytosis in Alzheimer's disease

IF 5.4 2区 医学 Q1 NEUROSCIENCES
Glia Pub Date : 2023-08-31 DOI:10.1002/glia.24465
Junjun Ni, Zhen Xie, Zhenzhen Quan, Jie Meng, Hong Qing
{"title":"How brain ‘cleaners’ fail: Mechanisms and therapeutic value of microglial phagocytosis in Alzheimer's disease","authors":"Junjun Ni,&nbsp;Zhen Xie,&nbsp;Zhenzhen Quan,&nbsp;Jie Meng,&nbsp;Hong Qing","doi":"10.1002/glia.24465","DOIUrl":null,"url":null,"abstract":"<p>Microglia are the resident phagocytes of the brain, where they primarily function in the clearance of dead cells and the removal of un- or misfolded proteins. The impaired activity of receptors or proteins involved in phagocytosis can result in enhanced inflammation and neurodegeneration. RNA-seq and genome-wide association studies have linked multiple phagocytosis-related genes to neurodegenerative diseases, while the knockout of such genes has been demonstrated to exert protective effects against neurodegeneration in animal models. The failure of microglial phagocytosis influences AD-linked pathologies, including amyloid β accumulation, tau propagation, neuroinflammation, and infection. However, a precise understanding of microglia-mediated phagocytosis in Alzheimer's disease (AD) is still lacking. In this review, we summarize current knowledge of the molecular mechanisms involved in microglial phagocytosis in AD across a wide range of pre-clinical, <i>post-mortem</i>, ex vivo, and clinical studies and review the current limitations regarding the detection of microglia phagocytosis in AD. Finally, we discuss the rationale of targeting microglial phagocytosis as a therapeutic strategy for preventing AD or slowing its progression.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 2","pages":"227-244"},"PeriodicalIF":5.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.24465","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microglia are the resident phagocytes of the brain, where they primarily function in the clearance of dead cells and the removal of un- or misfolded proteins. The impaired activity of receptors or proteins involved in phagocytosis can result in enhanced inflammation and neurodegeneration. RNA-seq and genome-wide association studies have linked multiple phagocytosis-related genes to neurodegenerative diseases, while the knockout of such genes has been demonstrated to exert protective effects against neurodegeneration in animal models. The failure of microglial phagocytosis influences AD-linked pathologies, including amyloid β accumulation, tau propagation, neuroinflammation, and infection. However, a precise understanding of microglia-mediated phagocytosis in Alzheimer's disease (AD) is still lacking. In this review, we summarize current knowledge of the molecular mechanisms involved in microglial phagocytosis in AD across a wide range of pre-clinical, post-mortem, ex vivo, and clinical studies and review the current limitations regarding the detection of microglia phagocytosis in AD. Finally, we discuss the rationale of targeting microglial phagocytosis as a therapeutic strategy for preventing AD or slowing its progression.

Abstract Image

大脑 "清洁工 "是如何失灵的?小胶质细胞吞噬阿尔茨海默病的机制和治疗价值
小胶质细胞是大脑中的常驻吞噬细胞,其主要功能是清除死亡细胞和未折叠或折叠错误的蛋白质。参与吞噬的受体或蛋白质的活性受损会导致炎症和神经退行性变的加剧。RNA-seq和全基因组关联研究已将多种吞噬相关基因与神经退行性疾病联系起来,而在动物模型中,敲除此类基因已被证明对神经退行性疾病具有保护作用。小胶质细胞吞噬功能失效会影响与注意力缺失症相关的病理变化,包括淀粉样蛋白 β 的积累、tau 的传播、神经炎症和感染。然而,人们对阿尔茨海默病(AD)中小胶质细胞介导的吞噬作用仍缺乏准确的认识。在这篇综述中,我们总结了目前临床前、死后、体外和临床研究中有关小胶质细胞吞噬参与阿尔茨海默病的分子机制的知识,并回顾了目前检测阿尔茨海默病小胶质细胞吞噬的局限性。最后,我们讨论了以小胶质细胞吞噬功能为靶点作为预防 AD 或减缓其进展的治疗策略的基本原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Glia
Glia 医学-神经科学
CiteScore
13.10
自引率
4.80%
发文量
162
审稿时长
3-8 weeks
期刊介绍: GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信