Manisha Jain, Brij Mohan Sharma, Sarita Sachdeva, Jan Kuta, Rostislav Červenka, Luca Nizzetto, Praveen Kukreti, Girija K. Bharat, Paromita Chakraborty
{"title":"Occurrence, Source and Dietary Exposure of Toxic and Essential Elements in the Indian Food Basket","authors":"Manisha Jain, Brij Mohan Sharma, Sarita Sachdeva, Jan Kuta, Rostislav Červenka, Luca Nizzetto, Praveen Kukreti, Girija K. Bharat, Paromita Chakraborty","doi":"10.1007/s00244-023-01017-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, representative urban and peri-urban Indian food baskets have been studied for the presence of toxic and essential elements. The concentration of target toxic and essential elements was used to estimate dietary intakes (EDIs) and health risks. Across all food matrices, toxic elements like Cd and Pb were dominant. The highest concentrations of the target elements were found in vegetables, with Cd, Pb, and Ni being beyond permissible limits of the Food and Agriculture Organization of the United Nations and the World Health organization (0.05 mg/kg, 0.1 mg/kg, and 1.5 mg/kg, respectively) in okra, spinach, and cauliflower. The sum of concentrations of the toxic elements (As, Ni, Hg, Cr, Cd, Pb) in vegetables had a range of 0.54–12.08 mg/kg, the highest sum was found in spinach (median 12.08 mg/kg), followed by okra (median 1.68 mg/kg). The EDI was observed for vegetables with a contribution as high as 92% for Cd. Dairy products were found with the highest loading for Ni with a dietary intake of 3.1 mg/kg/day for adults and twice as much for children. Carcinogenic risk for Ni was the highest and found above the threshold for all food categories, as was the case with As. Cumulative carcinogenic and non-carcinogenic risks were mostly contributed by milk and vegetables, in particular, spinach.</p></div>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":"85 4","pages":"466 - 484"},"PeriodicalIF":3.7000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00244-023-01017-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, representative urban and peri-urban Indian food baskets have been studied for the presence of toxic and essential elements. The concentration of target toxic and essential elements was used to estimate dietary intakes (EDIs) and health risks. Across all food matrices, toxic elements like Cd and Pb were dominant. The highest concentrations of the target elements were found in vegetables, with Cd, Pb, and Ni being beyond permissible limits of the Food and Agriculture Organization of the United Nations and the World Health organization (0.05 mg/kg, 0.1 mg/kg, and 1.5 mg/kg, respectively) in okra, spinach, and cauliflower. The sum of concentrations of the toxic elements (As, Ni, Hg, Cr, Cd, Pb) in vegetables had a range of 0.54–12.08 mg/kg, the highest sum was found in spinach (median 12.08 mg/kg), followed by okra (median 1.68 mg/kg). The EDI was observed for vegetables with a contribution as high as 92% for Cd. Dairy products were found with the highest loading for Ni with a dietary intake of 3.1 mg/kg/day for adults and twice as much for children. Carcinogenic risk for Ni was the highest and found above the threshold for all food categories, as was the case with As. Cumulative carcinogenic and non-carcinogenic risks were mostly contributed by milk and vegetables, in particular, spinach.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.