Francesco Menzella, Leonardo Antonicelli, Marcello Cottini, Gianluca Imeri, Lorenzo Corsi, Fabiano Di Marco
{"title":"Oscillometry in severe asthma: the state of the art and future perspectives.","authors":"Francesco Menzella, Leonardo Antonicelli, Marcello Cottini, Gianluca Imeri, Lorenzo Corsi, Fabiano Di Marco","doi":"10.1080/17476348.2023.2237872","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Approximately 3-10% of people with asthma have severe asthma (SA). Patients with SA have greater impairment in daily life and much higher costs. Even if asthma affects the entire bronchial tree, small airways have been recognized as the major site of airflow limitation. There are several tools for studying small airway dysfunction (SAD), but certainly the most interesting is oscillometry. Despite several studies, the clinical usefulness of oscillometry in asthma is still in question. This paper aims to provide evidence supporting the use of oscillometry to improve the management of SA in clinical practice.</p><p><strong>Areas covered: </strong>In the ATLANTIS study, SAD was strongly evident across all severity. Various tools are available for evaluation of SAD, and certainly an integrated use of these can provide complete and detailed information. However, the most suitable method is oscillometry, implemented for clinical routine by using either small pressure impulses or small pressure sinusoidal waves.</p><p><strong>Expert opinion: </strong>Oscillometry, despite its different technological implementations is the best tool for determining the impact of SAD on asthma and its control. Oscillometry will also be increasingly useful for choosing the appropriate drug, and there is ample room for a more widespread diffusion in clinical practice.</p>","PeriodicalId":12103,"journal":{"name":"Expert Review of Respiratory Medicine","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Respiratory Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17476348.2023.2237872","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Approximately 3-10% of people with asthma have severe asthma (SA). Patients with SA have greater impairment in daily life and much higher costs. Even if asthma affects the entire bronchial tree, small airways have been recognized as the major site of airflow limitation. There are several tools for studying small airway dysfunction (SAD), but certainly the most interesting is oscillometry. Despite several studies, the clinical usefulness of oscillometry in asthma is still in question. This paper aims to provide evidence supporting the use of oscillometry to improve the management of SA in clinical practice.
Areas covered: In the ATLANTIS study, SAD was strongly evident across all severity. Various tools are available for evaluation of SAD, and certainly an integrated use of these can provide complete and detailed information. However, the most suitable method is oscillometry, implemented for clinical routine by using either small pressure impulses or small pressure sinusoidal waves.
Expert opinion: Oscillometry, despite its different technological implementations is the best tool for determining the impact of SAD on asthma and its control. Oscillometry will also be increasingly useful for choosing the appropriate drug, and there is ample room for a more widespread diffusion in clinical practice.
期刊介绍:
Coverage will include the following key areas:
- Prospects for new and emerging therapeutics
- Epidemiology of disease
- Preventive strategies
- All aspects of COPD, from patient self-management to systemic effects of the disease and comorbidities
- Improved diagnostic methods, including imaging techniques, biomarkers and physiological tests.
- Advances in the treatment of respiratory infections and drug resistance issues
- Occupational and environmental factors
- Progress in smoking intervention and cessation methods
- Disease and treatment issues for defined populations, such as children and the elderly
- Respiratory intensive and critical care
- Updates on the status and advances of specific disease areas, including asthma, HIV/AIDS-related disease, cystic fibrosis, COPD and sleep-disordered breathing morbidity