{"title":"Daidara: A gigantic Gypsy LTR retrotransposon lineage in the springtail Allacma fusca genome","authors":"Kenji K. Kojima","doi":"10.1111/gtc.13062","DOIUrl":null,"url":null,"abstract":"<p>Long terminal repeat (LTR) retrotransposons are the major contributor to genome size expansion, as in the cases of the maize genome or the axolotl genome. Despite their impact on the genome size, the length of each retrotransposon is limited, compared to DNA transposons, which sometimes exceed over 100 kb. The longest LTR retrotransposon known to date is <i>Burro-1</i> from the planarian <i>Schmidtea medierranea</i>, which is around 35.7 kb long. Here through bioinformatics analysis, a new lineage of gigantic LTR retrotransposons, designated <i>Daidara,</i> is reported from the springtail <i>Allacma fusca</i> genome. Their entire length (25–33 kb) rivals <i>Burro</i> families, while their LTRs are shorter than 1.5 kb, in contrast to other gigantic LTR retrotransposon lineages <i>Burro</i> and <i>Ogre</i>, whose LTRs are around 5 kb long. <i>Daidara</i> encodes three core proteins corresponding to gag, pol, and an additional protein of unknown function. The phylogenetic analysis supports the independent gigantification of <i>Daidara</i> from <i>Burro</i> or <i>Ogre</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13062","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Long terminal repeat (LTR) retrotransposons are the major contributor to genome size expansion, as in the cases of the maize genome or the axolotl genome. Despite their impact on the genome size, the length of each retrotransposon is limited, compared to DNA transposons, which sometimes exceed over 100 kb. The longest LTR retrotransposon known to date is Burro-1 from the planarian Schmidtea medierranea, which is around 35.7 kb long. Here through bioinformatics analysis, a new lineage of gigantic LTR retrotransposons, designated Daidara, is reported from the springtail Allacma fusca genome. Their entire length (25–33 kb) rivals Burro families, while their LTRs are shorter than 1.5 kb, in contrast to other gigantic LTR retrotransposon lineages Burro and Ogre, whose LTRs are around 5 kb long. Daidara encodes three core proteins corresponding to gag, pol, and an additional protein of unknown function. The phylogenetic analysis supports the independent gigantification of Daidara from Burro or Ogre.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.