Malassezia sympodialis Mala s 1 allergen is a potential KELCH protein that cross reacts with human skin.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Dora E Corzo Leon, Annika Scheynius, Donna M MacCallum, Carol A Munro
{"title":"Malassezia sympodialis Mala s 1 allergen is a potential KELCH protein that cross reacts with human skin.","authors":"Dora E Corzo Leon, Annika Scheynius, Donna M MacCallum, Carol A Munro","doi":"10.1093/femsyr/foad028","DOIUrl":null,"url":null,"abstract":"<p><p>Malassezia are the dominant commensal yeast species of the human skin microbiota and are associated with inflammatory skin diseases, such as atopic eczema (AE). The Mala s 1 allergen of Malassezia sympodialis is a β-propeller protein, inducing both IgE and T-cell reactivity in AE patients. We demonstrate by immuno-electron microscopy that Mala s 1 is mainly located in the M. sympodialis yeast cell wall. An anti-Mala s 1 antibody did not inhibit M. sympodialis growth suggesting Mala s 1 may not be an antifungal target. In silico analysis of the predicted Mala s 1 protein sequence identified a motif indicative of a KELCH protein, a subgroup of β-propeller proteins. To test the hypothesis that antibodies against Mala s 1 cross-react with human skin (KELCH) proteins we examined the binding of the anti-Mala s 1 antibody to human skin explants and visualized binding in the epidermal skin layer. Putative human targets recognized by the anti-Mala s 1 antibody were identified by immunoblotting and proteomics. We propose that Mala s 1 is a KELCH-like β-propeller protein with similarity to human skin proteins. Mala s 1 recognition may trigger cross-reactive responses that contribute to skin diseases associated with M. sympodialis.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281499/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foad028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Malassezia are the dominant commensal yeast species of the human skin microbiota and are associated with inflammatory skin diseases, such as atopic eczema (AE). The Mala s 1 allergen of Malassezia sympodialis is a β-propeller protein, inducing both IgE and T-cell reactivity in AE patients. We demonstrate by immuno-electron microscopy that Mala s 1 is mainly located in the M. sympodialis yeast cell wall. An anti-Mala s 1 antibody did not inhibit M. sympodialis growth suggesting Mala s 1 may not be an antifungal target. In silico analysis of the predicted Mala s 1 protein sequence identified a motif indicative of a KELCH protein, a subgroup of β-propeller proteins. To test the hypothesis that antibodies against Mala s 1 cross-react with human skin (KELCH) proteins we examined the binding of the anti-Mala s 1 antibody to human skin explants and visualized binding in the epidermal skin layer. Putative human targets recognized by the anti-Mala s 1 antibody were identified by immunoblotting and proteomics. We propose that Mala s 1 is a KELCH-like β-propeller protein with similarity to human skin proteins. Mala s 1 recognition may trigger cross-reactive responses that contribute to skin diseases associated with M. sympodialis.

Abstract Image

Abstract Image

Abstract Image

马拉色菌马拉 s 1 过敏原是一种潜在的 KELCH 蛋白,会与人体皮肤发生交叉反应。
马拉色菌是人类皮肤微生物群中的主要共生酵母菌,与特应性湿疹(AE)等炎症性皮肤病有关。交配马拉色菌的马拉s 1过敏原是一种β-螺旋桨蛋白,可诱导特应性湿疹患者的IgE和T细胞反应。我们通过免疫电子显微镜证明,马拉s 1 主要位于交配马拉色菌酵母细胞壁中。抗马拉s 1抗体不能抑制交配酵母的生长,这表明马拉s 1可能不是抗真菌靶标。对预测的 Mala s 1 蛋白序列进行的硅分析发现了一个 KELCH 蛋白(β-螺旋桨蛋白的一个亚群)的指示基团。为了验证马拉s 1抗体与人类皮肤(KELCH)蛋白交叉反应的假设,我们检测了抗马拉s 1抗体与人类皮肤外植体的结合情况,并观察了表皮层的结合情况。通过免疫印迹法和蛋白质组学鉴定了抗马拉s 1抗体识别的人类靶标。我们认为 Mala s 1 是一种类似于 KELCH 的 β-螺旋桨蛋白,与人类皮肤蛋白具有相似性。Mala s 1的识别可能会引发交叉反应,从而导致与交配丝虫有关的皮肤疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信