Mingming Li, Kuo Gu, Qingling Kong, Guonian Wang, Jing Gu
{"title":"Sufentanil inhibits the metastasis and immune response of breast cancer via mediating the NF-κB pathway.","authors":"Mingming Li, Kuo Gu, Qingling Kong, Guonian Wang, Jing Gu","doi":"10.1080/08923973.2023.2228476","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Breast cancer (BC) causes cancer-related death in women. Sufentanil is used for cancer pain and postoperative analgesia. This study aimed to explore the role of sufentanil in BC.</p><p><strong>Methods: </strong>BC cells were treated with sufentanil, and cell viability was evaluated using the cell counting kit-8 (CCK-8) assay. Biological behaviors were analyzed using EDU assay, flow cytometry, transwell assay, western blotting, and ELISA. The levels of NF-κB pathway-related factors were examined using western blotting. A xenograft tumor model was established to assess the effects of sufentanil on tumor growth <i>in vivo</i>.</p><p><strong>Results: </strong>Sufentanil at the concentration of 20, 40, 80, and 160 nM suppressed cell viability (IC50 = 39.84 in MDA-MB-231 cells, and IC50 = 47.46 in BT549 cells). Sufentanil inhibited the proliferation, invasion, epithelial-mesenchymal transition (EMT), and inflammation, but induced apoptosis of BC cells. Mechanically, sufentanil suppressed the activation of the NF-κB pathway. Rescue experiments showed that RANKL (NF-κB receptor agonist) abrogated the effects induced by sufentanil. Moreover, sufentanil inhibited tumor growth, inflammatory response, but promoted apoptosis <i>via</i> the NF-κB pathway <i>in vivo</i>.</p><p><strong>Conclusions: </strong>Sufentanil decelerated the progression of BC by regulating the NF-κB pathway, suggesting sufentanil may be used in BC therapy.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2023.2228476","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Breast cancer (BC) causes cancer-related death in women. Sufentanil is used for cancer pain and postoperative analgesia. This study aimed to explore the role of sufentanil in BC.
Methods: BC cells were treated with sufentanil, and cell viability was evaluated using the cell counting kit-8 (CCK-8) assay. Biological behaviors were analyzed using EDU assay, flow cytometry, transwell assay, western blotting, and ELISA. The levels of NF-κB pathway-related factors were examined using western blotting. A xenograft tumor model was established to assess the effects of sufentanil on tumor growth in vivo.
Results: Sufentanil at the concentration of 20, 40, 80, and 160 nM suppressed cell viability (IC50 = 39.84 in MDA-MB-231 cells, and IC50 = 47.46 in BT549 cells). Sufentanil inhibited the proliferation, invasion, epithelial-mesenchymal transition (EMT), and inflammation, but induced apoptosis of BC cells. Mechanically, sufentanil suppressed the activation of the NF-κB pathway. Rescue experiments showed that RANKL (NF-κB receptor agonist) abrogated the effects induced by sufentanil. Moreover, sufentanil inhibited tumor growth, inflammatory response, but promoted apoptosis via the NF-κB pathway in vivo.
Conclusions: Sufentanil decelerated the progression of BC by regulating the NF-κB pathway, suggesting sufentanil may be used in BC therapy.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).