Nazmus Sakib, Kathryn Hyer, Debra Dobbs, Lindsay Peterson, Dylan J Jester, Nan Kong, Mingyang Li
{"title":"A GIS enhanced data analytics approach for predicting nursing home hurricane evacuation response.","authors":"Nazmus Sakib, Kathryn Hyer, Debra Dobbs, Lindsay Peterson, Dylan J Jester, Nan Kong, Mingyang Li","doi":"10.1007/s13755-022-00190-y","DOIUrl":null,"url":null,"abstract":"<p><p>Nursing homes (NHs) are responsible for caring for frail, older adults, who are highly vulnerable to natural disasters, such as hurricanes. Due to the influence of highly uncertain environmental conditions and varied NH characteristics (e.g., geo-location, staffing, residents' health conditions), the NH evacuation response, namely evacuating or sheltering-in-place, is highly uncertain. Accurate prediction of NH evacuation response is important for emergency management agencies to accurately anticipate the NH evacuation demand surge with healthcare resources proactively planned. Existing hurricane evacuation research mainly focuses on the general population. For NH evacuation, existing studies mainly focus on conceptual studies and/or qualitative analysis using a single source of data, such as surveys or resident health data. There is a lack of research to develop analytics-based method by fusing rich environmental data with NH data to improve the prediction accuracy. In this paper, we propose a Geographic Information System (GIS) data enhanced predictive analytics approach for forecasting NH evacuation response by fusing multi-source data related to storm conditions, geographical information, NH organizational characteristics as well as staffing and residents characteristics of each NH. In particular, multiple GIS features, such as distance to storm trajectory, projected wind speed, potential storm surge and NH elevation, are extracted from rich GIS information and incorporated to improve the prediction performance. A real-world case study of NH evacuation during Hurricane Irma in 2017 is examined to demonstrate superior prediction performance of the proposed work over a large number of predictive analytics methods without GIS information.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"10 1","pages":"28"},"PeriodicalIF":4.7000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00190-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Nursing homes (NHs) are responsible for caring for frail, older adults, who are highly vulnerable to natural disasters, such as hurricanes. Due to the influence of highly uncertain environmental conditions and varied NH characteristics (e.g., geo-location, staffing, residents' health conditions), the NH evacuation response, namely evacuating or sheltering-in-place, is highly uncertain. Accurate prediction of NH evacuation response is important for emergency management agencies to accurately anticipate the NH evacuation demand surge with healthcare resources proactively planned. Existing hurricane evacuation research mainly focuses on the general population. For NH evacuation, existing studies mainly focus on conceptual studies and/or qualitative analysis using a single source of data, such as surveys or resident health data. There is a lack of research to develop analytics-based method by fusing rich environmental data with NH data to improve the prediction accuracy. In this paper, we propose a Geographic Information System (GIS) data enhanced predictive analytics approach for forecasting NH evacuation response by fusing multi-source data related to storm conditions, geographical information, NH organizational characteristics as well as staffing and residents characteristics of each NH. In particular, multiple GIS features, such as distance to storm trajectory, projected wind speed, potential storm surge and NH elevation, are extracted from rich GIS information and incorporated to improve the prediction performance. A real-world case study of NH evacuation during Hurricane Irma in 2017 is examined to demonstrate superior prediction performance of the proposed work over a large number of predictive analytics methods without GIS information.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.