{"title":"Current Drugs and their Therapeutic Targets for Hypoxia-inducible Factors in Cancer.","authors":"Esha Joshi, Medha Pandya, Urja Desai","doi":"10.2174/1389203724666230601092245","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia, a prevalent characteristic of both solid and liquid malignancies, is found to regulate how genes are expressed in a way that promotes cellular adaptability and survival. Metastasis is controlled by hypoxia-inducible factors (HIFs). HIFs are dimeric protein molecules made up of an oxygen (O<sub>2</sub>) responsive HIF-1α, HIF-2α, or HIF-3α domain and a periodically produced HIF-1β portion (also known as ARNT). Nevertheless, it is important to note that HIFs degrade under normoxic conditions. A large multitude of different biological operations, including vessels generation, oxygen delivery, stemness, pluripotency, multiplication, epithelial to mesenchymal shift, metastatic prevalence and intrusion, redox equilibrium, and programmed cell death, are strictly controlled by over 70 immediate HIF target genes that have been reported. Metabolic reprogramming, which modulates cellular energy generation aside from oxidative phosphorylation and concerning glycolysis, is among the core tasks of HIF target genes. As a result, choosing HIFs as a primary target in the treatment of various tumors is essential. We have a very limited understanding of this extremely complex topic, which is characterised by hypoxia- induced resistance. In order to combat this, scientists are investigating numerous cutting-edge approaches. Traditional chemotherapeutic drugs used to treat cancer are frequently linked to unfavourable side effects and the development of chemoresistance. The use of natural compounds in conjunction with chemotherapy drugs is rising as a result of their capacity to alter a number of molecular practices with a lower detrimental impact. Experimental and clinical research is accumulating evidence that phytochemicals can influence the genesis and progression of cancer by favourably modulating a number of signalling pathways. Combinations of phytochemicals are potent cancer treatment options because they incentivise apoptosis, limit cell prevalence, make cancerous cells more susceptible, and escalate immunity. Despite being characterised, HIF-1-independent mechanisms for medication resistance in hypoxia are still infrequently reported. The prime aim of the article is to summarise the most recent research on the molecular basis of hypoxia-induced chemoresistance and how chemotherapy and phytochemicals can be used to treat cancer patients who are resistant to drugs.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":"24 6","pages":"447-464"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389203724666230601092245","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Hypoxia, a prevalent characteristic of both solid and liquid malignancies, is found to regulate how genes are expressed in a way that promotes cellular adaptability and survival. Metastasis is controlled by hypoxia-inducible factors (HIFs). HIFs are dimeric protein molecules made up of an oxygen (O2) responsive HIF-1α, HIF-2α, or HIF-3α domain and a periodically produced HIF-1β portion (also known as ARNT). Nevertheless, it is important to note that HIFs degrade under normoxic conditions. A large multitude of different biological operations, including vessels generation, oxygen delivery, stemness, pluripotency, multiplication, epithelial to mesenchymal shift, metastatic prevalence and intrusion, redox equilibrium, and programmed cell death, are strictly controlled by over 70 immediate HIF target genes that have been reported. Metabolic reprogramming, which modulates cellular energy generation aside from oxidative phosphorylation and concerning glycolysis, is among the core tasks of HIF target genes. As a result, choosing HIFs as a primary target in the treatment of various tumors is essential. We have a very limited understanding of this extremely complex topic, which is characterised by hypoxia- induced resistance. In order to combat this, scientists are investigating numerous cutting-edge approaches. Traditional chemotherapeutic drugs used to treat cancer are frequently linked to unfavourable side effects and the development of chemoresistance. The use of natural compounds in conjunction with chemotherapy drugs is rising as a result of their capacity to alter a number of molecular practices with a lower detrimental impact. Experimental and clinical research is accumulating evidence that phytochemicals can influence the genesis and progression of cancer by favourably modulating a number of signalling pathways. Combinations of phytochemicals are potent cancer treatment options because they incentivise apoptosis, limit cell prevalence, make cancerous cells more susceptible, and escalate immunity. Despite being characterised, HIF-1-independent mechanisms for medication resistance in hypoxia are still infrequently reported. The prime aim of the article is to summarise the most recent research on the molecular basis of hypoxia-induced chemoresistance and how chemotherapy and phytochemicals can be used to treat cancer patients who are resistant to drugs.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.