Learning Rat-Like Behavioral Interaction Using a Small-Scale Robotic Rat.

IF 10.5 Q1 ENGINEERING, BIOMEDICAL
Hongzhao Xie, Zihang Gao, Guanglu Jia, Shingo Shimoda, Qing Shi
{"title":"Learning Rat-Like Behavioral Interaction Using a Small-Scale Robotic Rat.","authors":"Hongzhao Xie,&nbsp;Zihang Gao,&nbsp;Guanglu Jia,&nbsp;Shingo Shimoda,&nbsp;Qing Shi","doi":"10.34133/cbsystems.0032","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a novel method for emulating rat-like behavioral interactions in robots using reinforcement learning. Specifically, we develop a state decision method to optimize the interaction process among 6 known behavior types that have been identified in previous research on rat interactions. The novelty of our method lies in using the temporal difference (TD) algorithm to optimize the state decision process, which enables the robots to make informed decisions about their behavior choices. To assess the similarity between robot and rat behavior, we use Pearson correlation. We then use TD-<i>λ</i> to update the state value function and make state decisions based on probability. The robots execute these decisions using our dynamics-based controller. Our results demonstrate that our method can generate rat-like behaviors on both short- and long-term timescales, with interaction information entropy comparable to that between real rats. Overall, our approach shows promise for controlling robots in robot-rat interactions and highlights the potential of using reinforcement learning to develop more sophisticated robotic systems.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0032"},"PeriodicalIF":10.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel method for emulating rat-like behavioral interactions in robots using reinforcement learning. Specifically, we develop a state decision method to optimize the interaction process among 6 known behavior types that have been identified in previous research on rat interactions. The novelty of our method lies in using the temporal difference (TD) algorithm to optimize the state decision process, which enables the robots to make informed decisions about their behavior choices. To assess the similarity between robot and rat behavior, we use Pearson correlation. We then use TD-λ to update the state value function and make state decisions based on probability. The robots execute these decisions using our dynamics-based controller. Our results demonstrate that our method can generate rat-like behaviors on both short- and long-term timescales, with interaction information entropy comparable to that between real rats. Overall, our approach shows promise for controlling robots in robot-rat interactions and highlights the potential of using reinforcement learning to develop more sophisticated robotic systems.

Abstract Image

Abstract Image

Abstract Image

用小型机器老鼠学习老鼠的行为互动。
在本文中,我们提出了一种利用强化学习来模拟机器人中类似老鼠的行为交互的新方法。具体而言,我们开发了一种状态决策方法来优化先前在大鼠相互作用研究中确定的6种已知行为类型之间的相互作用过程。该方法的新颖之处在于使用时间差分(TD)算法来优化状态决策过程,使机器人能够对其行为选择做出明智的决策。为了评估机器人和大鼠行为之间的相似性,我们使用Pearson相关性。然后,我们使用TD-λ来更新状态值函数,并基于概率做出状态决策。机器人使用我们基于动态的控制器来执行这些决策。我们的研究结果表明,我们的方法可以在短期和长期时间尺度上产生类似大鼠的行为,其交互信息熵与真实大鼠之间的交互信息熵相当。总的来说,我们的方法显示了在机器人与老鼠的互动中控制机器人的希望,并强调了使用强化学习开发更复杂机器人系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信