Fangting Zhou, Kejun He, Kunbo Wang, Yanxun Xu, Yang Ni
{"title":"Functional Bayesian networks for discovering causality from multivariate functional data","authors":"Fangting Zhou, Kejun He, Kunbo Wang, Yanxun Xu, Yang Ni","doi":"10.1111/biom.13922","DOIUrl":null,"url":null,"abstract":"<p>Multivariate functional data arise in a wide range of applications. One fundamental task is to understand the causal relationships among these functional objects of interest. In this paper, we develop a novel Bayesian network (BN) model for multivariate functional data where conditional independencies and causal structure are encoded by a directed acyclic graph. Specifically, we allow the functional objects to deviate from Gaussian processes, which is the key to unique causal structure identification even when the functions are measured with noises. A fully Bayesian framework is designed to infer the functional BN model with natural uncertainty quantification through posterior summaries. Simulation studies and real data examples demonstrate the practical utility of the proposed model.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"79 4","pages":"3279-3293"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/biom.13922","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/biom.13922","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multivariate functional data arise in a wide range of applications. One fundamental task is to understand the causal relationships among these functional objects of interest. In this paper, we develop a novel Bayesian network (BN) model for multivariate functional data where conditional independencies and causal structure are encoded by a directed acyclic graph. Specifically, we allow the functional objects to deviate from Gaussian processes, which is the key to unique causal structure identification even when the functions are measured with noises. A fully Bayesian framework is designed to infer the functional BN model with natural uncertainty quantification through posterior summaries. Simulation studies and real data examples demonstrate the practical utility of the proposed model.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.