{"title":"Metric networks for enhanced perception of non-local semantic information.","authors":"Jia Li, Yu-Qian Zhou, Qiu-Yan Zhang","doi":"10.3389/fnbot.2023.1234129","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Metric learning, as a fundamental research direction in the field of computer vision, has played a crucial role in image matching. Traditional metric learning methods aim at constructing two-branch siamese neural networks to address the challenge of image matching, but they often overlook to cross-source and cross-view scenarios.</p><p><strong>Methods: </strong>In this article, a multi-branch metric learning model is proposed to address these limitations. The main contributions of this work are as follows: Firstly, we design a multi-branch siamese network model that enhances measurement reliability through information compensation among data points. Secondly, we construct a non-local information perception and fusion model, which accurately distinguishes positive and negative samples by fusing information at different scales. Thirdly, we enhance the model by integrating semantic information and establish an information consistency mapping between multiple branches, thereby improving the robustness in cross-source and cross-view scenarios.</p><p><strong>Results: </strong>Experimental tests which demonstrate the effectiveness of the proposed method are carried out under various conditions, including homologous, heterogeneous, multi-view, and crossview scenarios. Compared to the state-of-the-art comparison algorithms, our proposed algorithm achieves an improvement of ~1, 2, 1, and 1% in terms of similarity measurement Recall@10, respectively, under these four conditions.</p><p><strong>Discussion: </strong>In addition, our work provides an idea for improving the crossscene application ability of UAV positioning and navigation algorithm.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"17 ","pages":"1234129"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445135/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2023.1234129","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Metric learning, as a fundamental research direction in the field of computer vision, has played a crucial role in image matching. Traditional metric learning methods aim at constructing two-branch siamese neural networks to address the challenge of image matching, but they often overlook to cross-source and cross-view scenarios.
Methods: In this article, a multi-branch metric learning model is proposed to address these limitations. The main contributions of this work are as follows: Firstly, we design a multi-branch siamese network model that enhances measurement reliability through information compensation among data points. Secondly, we construct a non-local information perception and fusion model, which accurately distinguishes positive and negative samples by fusing information at different scales. Thirdly, we enhance the model by integrating semantic information and establish an information consistency mapping between multiple branches, thereby improving the robustness in cross-source and cross-view scenarios.
Results: Experimental tests which demonstrate the effectiveness of the proposed method are carried out under various conditions, including homologous, heterogeneous, multi-view, and crossview scenarios. Compared to the state-of-the-art comparison algorithms, our proposed algorithm achieves an improvement of ~1, 2, 1, and 1% in terms of similarity measurement Recall@10, respectively, under these four conditions.
Discussion: In addition, our work provides an idea for improving the crossscene application ability of UAV positioning and navigation algorithm.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.