Mental Fatigue From Smartphone Use or Stroop Task Does Not Affect Bench Press Force-Velocity Profile, One-Repetition Maximum, or Vertical Jump Performance.
Carlos Alix-Fages, Eneko Baz-Valle, Henar González-Cano, Pablo Jiménez-Martínez, Carlos Balsalobre-Fernández
{"title":"Mental Fatigue From Smartphone Use or Stroop Task Does Not Affect Bench Press Force-Velocity Profile, One-Repetition Maximum, or Vertical Jump Performance.","authors":"Carlos Alix-Fages, Eneko Baz-Valle, Henar González-Cano, Pablo Jiménez-Martínez, Carlos Balsalobre-Fernández","doi":"10.1123/mc.2022-0133","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to explore the effects of mental fatigue from smartphone use and Stroop task on bench press force-velocity (F-V) profile, one-repetition maximum (1RM), and countermovement jump (CMJ) performance. Twenty-five trained subjects (age = 25.8 ± 5.7 years) completed three sessions separated by 1 week following a randomized double-blinded crossover design. Each session consisted of F-V relationship, 1RM, and CMJ measurements after performing 30 min of control, social media, or Stroop task. Perceived mental fatigue and motivation were recorded. Mental fatigue, motivation, CMJ height, bench press 1RM, and F-V profile variables (maximal force, maximal velocity, and maximal power) were compared between interventions. Significant differences were found for mental fatigue between interventions (p ≤ .001). Both ST (p ≤ .001) and SM (p = .007) induced higher mental fatigue than control. However, no significant differences between interventions were observed for any other variable (p = .056-.723). The magnitude of the differences between interventions ranged from negligible to small (effect sizes ≤ 0.24). These results suggest that although both ST and SM were effective to induce mental fatigue, neither ST nor SM affected CMJ performance, bench press 1RM, or any variable of the F-V profile compared with the control task.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 3","pages":"631-644"},"PeriodicalIF":0.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2022-0133","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of this study was to explore the effects of mental fatigue from smartphone use and Stroop task on bench press force-velocity (F-V) profile, one-repetition maximum (1RM), and countermovement jump (CMJ) performance. Twenty-five trained subjects (age = 25.8 ± 5.7 years) completed three sessions separated by 1 week following a randomized double-blinded crossover design. Each session consisted of F-V relationship, 1RM, and CMJ measurements after performing 30 min of control, social media, or Stroop task. Perceived mental fatigue and motivation were recorded. Mental fatigue, motivation, CMJ height, bench press 1RM, and F-V profile variables (maximal force, maximal velocity, and maximal power) were compared between interventions. Significant differences were found for mental fatigue between interventions (p ≤ .001). Both ST (p ≤ .001) and SM (p = .007) induced higher mental fatigue than control. However, no significant differences between interventions were observed for any other variable (p = .056-.723). The magnitude of the differences between interventions ranged from negligible to small (effect sizes ≤ 0.24). These results suggest that although both ST and SM were effective to induce mental fatigue, neither ST nor SM affected CMJ performance, bench press 1RM, or any variable of the F-V profile compared with the control task.
期刊介绍:
Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation.
Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders.
Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement.
In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.