{"title":"Nonbiomorphic Passively Adaptive Swimming Robot Enables Agile Propulsion in Cluttered Aquatic Environments.","authors":"Bangyuan Liu, Frank L Hammond","doi":"10.1089/soro.2022.0063","DOIUrl":null,"url":null,"abstract":"<p><p>Aquatic swimmers, whether natural or artificial, leverage their maneuverability and morphological adaptability to operate successfully in diverse, complex underwater environments. Maneuverability allows swimmers the agility to change speed and direction within a constrained operating space, while morphological adaptability allows their bodies to deform as they avoid obstacles and pass through narrow gaps. In this work, we design a soft, modular, nonbiomorphic swimming robot that emulates the maneuverability and adaptability of biological swimmers. This tethered swimming robot is actuated by a two degree-of-freedom (2-DOF) cable-driven mechanism that enables not only common maneuvers, such as undulatory surging and pitch/yaw rotations, but also a roll rotation maneuver that is steady and controllable. This simple 2-DOF system demonstrates full 3D swimming abilities in a space-constrained underwater test bed. The soft compliant body and passive foldable fins of the swimming robot lend to its morphological adaptability, allowing it to move through narrow gaps, channels, and tunnels and to avoid obstacles without the need for a low-level feedback control strategy. The passive adaptability and maneuvering capabilities of our swimming robot offer a new approach to achieving underwater navigation in complex real-world settings.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"884-896"},"PeriodicalIF":6.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0063","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Aquatic swimmers, whether natural or artificial, leverage their maneuverability and morphological adaptability to operate successfully in diverse, complex underwater environments. Maneuverability allows swimmers the agility to change speed and direction within a constrained operating space, while morphological adaptability allows their bodies to deform as they avoid obstacles and pass through narrow gaps. In this work, we design a soft, modular, nonbiomorphic swimming robot that emulates the maneuverability and adaptability of biological swimmers. This tethered swimming robot is actuated by a two degree-of-freedom (2-DOF) cable-driven mechanism that enables not only common maneuvers, such as undulatory surging and pitch/yaw rotations, but also a roll rotation maneuver that is steady and controllable. This simple 2-DOF system demonstrates full 3D swimming abilities in a space-constrained underwater test bed. The soft compliant body and passive foldable fins of the swimming robot lend to its morphological adaptability, allowing it to move through narrow gaps, channels, and tunnels and to avoid obstacles without the need for a low-level feedback control strategy. The passive adaptability and maneuvering capabilities of our swimming robot offer a new approach to achieving underwater navigation in complex real-world settings.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.