{"title":"Multipart Build Effects on Temperature and Residual Stress by Laser Beam Powder Bed Fusion Additive Manufacturing.","authors":"Wenyou Zhang, Mingming Tong, Noel M Harrison","doi":"10.1089/3dp.2021.0143","DOIUrl":null,"url":null,"abstract":"<p><p>Laser beam powder bed fusion (PBF-LB) is a leading technique among metal additive manufacturing (AM), and it has a wide range of applications in aerospace and medical devices. Most of the existing PBF-LB process modeling is mainly based on the fabrication of a single part on a large build plate, which is not reflective of the practical multipart PBF-LB manufacturing. The effects of batch size on the thermal and mechanical behavior of additively manufactured parts have not been investigated. In this work, the multipart PBF-LB thermomechanical modeling framework was proposed for the first time. The effects of sample numbers (1, 2, and 4) on temperature and residual stress (RS) of part-scale components were computationally investigated. It is found that RS within the parts decreased with increasing number of components per build. Parts located at the central areas of the build plate had larger RS than at the border. These findings can be beneficial for informing AM designers and operators of the optimum printing setup to minimize RS of metal parts in PBF-LB.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"749-761"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Laser beam powder bed fusion (PBF-LB) is a leading technique among metal additive manufacturing (AM), and it has a wide range of applications in aerospace and medical devices. Most of the existing PBF-LB process modeling is mainly based on the fabrication of a single part on a large build plate, which is not reflective of the practical multipart PBF-LB manufacturing. The effects of batch size on the thermal and mechanical behavior of additively manufactured parts have not been investigated. In this work, the multipart PBF-LB thermomechanical modeling framework was proposed for the first time. The effects of sample numbers (1, 2, and 4) on temperature and residual stress (RS) of part-scale components were computationally investigated. It is found that RS within the parts decreased with increasing number of components per build. Parts located at the central areas of the build plate had larger RS than at the border. These findings can be beneficial for informing AM designers and operators of the optimum printing setup to minimize RS of metal parts in PBF-LB.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.