A mobile APP-based, customizable automated device for self-administered olfactory testing and an implementation of smell identification test.

IF 2.8 4区 心理学 Q1 BEHAVIORAL SCIENCES
Zhihao Lan, Qing X Yang, Zhi-Hong Lyu, Cailing Feng, Liansheng Wang, Baowei Ji, Xuefei Yu, Sherman Xuegang Xin
{"title":"A mobile APP-based, customizable automated device for self-administered olfactory testing and an implementation of smell identification test.","authors":"Zhihao Lan, Qing X Yang, Zhi-Hong Lyu, Cailing Feng, Liansheng Wang, Baowei Ji, Xuefei Yu, Sherman Xuegang Xin","doi":"10.1093/chemse/bjad022","DOIUrl":null,"url":null,"abstract":"<p><p>Olfactory tests are used for the evaluation of ability to detect and identify common odors in humans psychophysically. Olfactory tests are currently administered by professionals with a set of given odorants. Manual administration of such tests can be labor and cost intensive and data collected as such are confounded with experimental variables, which adds personnel costs and introduces potential errors and data variability. For large-scale and longitudinal studies, manually recorded data must be collected and compiled from multiple sites. It is difficult to standardize the way data are collected and recorded. There is a need for a computerized smell test system for psychophysical and clinical applications. A mobile digital olfactory testing system (DOTS) was developed, consisting of an odor delivery system (DOTS-ODD) and a mobile application program (DOTS-APP) connected wirelessly. The University of Pennsylvania Smell Identification Test was implemented in DOTS and compared to its commercial product on a cohort of 80 normosmic subjects and a clinical cohort of 12 Parkinson's disease patients. A test-retest was conducted on 29 subjects of the normal cohort. The smell identification scores obtained from the DOTS and standard UPSIT commercial test are highly correlated (r = 0.714, P < 0.001), and test-retest reliability coefficient was 0.807 (r = 0.807, P < 0.001). The DOTS is customizable and mobile compatible, which allows for the implementation of standardized olfactory tests and the customization of investigators' experimental paradigms. The DOTS-APP on mobile devices offers capabilities for a broad range of on-site, online, or remote clinical and scientific chemosensory applications.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjad022","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Olfactory tests are used for the evaluation of ability to detect and identify common odors in humans psychophysically. Olfactory tests are currently administered by professionals with a set of given odorants. Manual administration of such tests can be labor and cost intensive and data collected as such are confounded with experimental variables, which adds personnel costs and introduces potential errors and data variability. For large-scale and longitudinal studies, manually recorded data must be collected and compiled from multiple sites. It is difficult to standardize the way data are collected and recorded. There is a need for a computerized smell test system for psychophysical and clinical applications. A mobile digital olfactory testing system (DOTS) was developed, consisting of an odor delivery system (DOTS-ODD) and a mobile application program (DOTS-APP) connected wirelessly. The University of Pennsylvania Smell Identification Test was implemented in DOTS and compared to its commercial product on a cohort of 80 normosmic subjects and a clinical cohort of 12 Parkinson's disease patients. A test-retest was conducted on 29 subjects of the normal cohort. The smell identification scores obtained from the DOTS and standard UPSIT commercial test are highly correlated (r = 0.714, P < 0.001), and test-retest reliability coefficient was 0.807 (r = 0.807, P < 0.001). The DOTS is customizable and mobile compatible, which allows for the implementation of standardized olfactory tests and the customization of investigators' experimental paradigms. The DOTS-APP on mobile devices offers capabilities for a broad range of on-site, online, or remote clinical and scientific chemosensory applications.

基于移动 APP 的可定制自动设备,用于自控嗅觉测试和气味识别测试的实施。
嗅觉测试用于从心理生理上评估人类检测和识别常见气味的能力。目前,嗅觉测试是由专业人员通过一组给定的气味来进行的。人工进行此类测试需要大量的人力和成本,收集到的数据会与实验变量相混淆,从而增加人员成本,并带来潜在的误差和数据变异。对于大规模和纵向研究,必须从多个地点收集和汇编人工记录的数据。数据收集和记录方式很难标准化。心理物理学和临床应用需要一种计算机化的嗅觉测试系统。我们开发了一种移动数字嗅觉测试系统(DOTS),它由无线连接的气味传递系统(DOTS-ODD)和移动应用程序(DOTS-APP)组成。宾夕法尼亚大学嗅觉识别测试在 DOTS 中实施,并在 80 名正常人和 12 名帕金森病患者的临床队列中与其商业产品进行比较。对正常人群中的 29 名受试者进行了重复测试。从 DOTS 和标准 UPSIT 商业测试中获得的气味识别分数高度相关(r = 0.714,P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Senses
Chemical Senses 医学-行为科学
CiteScore
8.60
自引率
2.90%
发文量
25
审稿时长
1 months
期刊介绍: Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信