Efficient homology-based annotation of transposable elements using minimizers

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Laura Natalia Gonzalez-García, Daniela Lozano-Arce, Juan Pablo Londoño, Romain Guyot, Jorge Duitama
{"title":"Efficient homology-based annotation of transposable elements using minimizers","authors":"Laura Natalia Gonzalez-García,&nbsp;Daniela Lozano-Arce,&nbsp;Juan Pablo Londoño,&nbsp;Romain Guyot,&nbsp;Jorge Duitama","doi":"10.1002/aps3.11520","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Transposable elements (TEs) make up more than half of the genomes of complex plant species and can modulate the expression of neighboring genes, producing significant variability of agronomically relevant traits. The availability of long-read sequencing technologies allows the building of genome assemblies for plant species with large and complex genomes. Unfortunately, TE annotation currently represents a bottleneck in the annotation of genome assemblies.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>We present a new functionality of the Next-Generation Sequencing Experience Platform (NGSEP) to perform efficient homology-based TE annotation. Sequences in a reference library are treated as long reads and mapped to an input genome assembly. A hierarchical annotation is then assigned by homology using the annotation of the reference library. We tested the performance of our algorithm on genome assemblies of different plant species, including <i>Arabidopsis thaliana</i>, <i>Oryza sativa, Coffea humblotiana</i>, and <i>Triticum aestivum</i> (bread wheat). Our algorithm outperforms traditional homology-based annotation tools in speed by a factor of three to &gt;20, reducing the annotation time of the <i>T. aestivum</i> genome from months to hours, and recovering up to 80% of TEs annotated with RepeatMasker with a precision of up to 0.95.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>NGSEP allows rapid analysis of TEs, especially in very large and TE-rich plant genomes.</p>\n </section>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bsapubs.onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11520","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

Premise

Transposable elements (TEs) make up more than half of the genomes of complex plant species and can modulate the expression of neighboring genes, producing significant variability of agronomically relevant traits. The availability of long-read sequencing technologies allows the building of genome assemblies for plant species with large and complex genomes. Unfortunately, TE annotation currently represents a bottleneck in the annotation of genome assemblies.

Methods and Results

We present a new functionality of the Next-Generation Sequencing Experience Platform (NGSEP) to perform efficient homology-based TE annotation. Sequences in a reference library are treated as long reads and mapped to an input genome assembly. A hierarchical annotation is then assigned by homology using the annotation of the reference library. We tested the performance of our algorithm on genome assemblies of different plant species, including Arabidopsis thaliana, Oryza sativa, Coffea humblotiana, and Triticum aestivum (bread wheat). Our algorithm outperforms traditional homology-based annotation tools in speed by a factor of three to >20, reducing the annotation time of the T. aestivum genome from months to hours, and recovering up to 80% of TEs annotated with RepeatMasker with a precision of up to 0.95.

Conclusions

NGSEP allows rapid analysis of TEs, especially in very large and TE-rich plant genomes.

Abstract Image

利用最小化器高效的基于同构的转座元素注释
前置转座因子(te)占复杂植物基因组的一半以上,可以调节邻近基因的表达,产生显著的农艺性状变异。长读测序技术的可用性允许构建具有大型和复杂基因组的植物物种的基因组组装。不幸的是,TE注释目前是基因组组装注释的瓶颈。方法和结果我们提出了下一代测序体验平台(NGSEP)的新功能,以执行高效的基于同源的TE注释。参考文库中的序列被视为长读段,并映射到输入基因组组装。然后使用参考库的注释通过同源性分配分层注释。我们测试了算法在不同植物物种基因组组装上的性能,包括拟南芥、水稻、咖啡和小麦(面包小麦)。我们的算法在速度上比传统的基于同源性的注释工具高出3到20倍,将T. aestivum基因组的注释时间从几个月减少到几个小时,并且以高达0.95的精度恢复了高达80%的用RepeatMasker注释的te。结论NGSEP可以快速分析te,特别是在非常大的和富含te的植物基因组中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信