Colorimetric Signal Readout for the Detection of Volatile Organic Compounds Using a Printable Glass-Based Dielectric Barrier Discharge-Type Helium Plasma Detector

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Jingqin Mao, Longze Liu, Yahya Atwa, Junming Hou, Zhenxun Wu and Hamza Shakeel*, 
{"title":"Colorimetric Signal Readout for the Detection of Volatile Organic Compounds Using a Printable Glass-Based Dielectric Barrier Discharge-Type Helium Plasma Detector","authors":"Jingqin Mao,&nbsp;Longze Liu,&nbsp;Yahya Atwa,&nbsp;Junming Hou,&nbsp;Zhenxun Wu and Hamza Shakeel*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00012","DOIUrl":null,"url":null,"abstract":"<p >In this paper, we report on a printable glass-based manufacturing method and a new proof-of-concept colorimetric signal readout scheme for a dielectric barrier discharge (DBD)-type helium plasma photoionization detector. The sensor consists of a millimeter-sized glass chamber manufactured using a printable glass suspension. Plasma inside the chip is generated using a custom-built power supply (900 V and 83.6 kHz), and the detector uses ∼5 W of power. Our new detection scheme is based on detecting the change in the color of plasma after the introduction of target gases. The change in color is first captured by a smartphone camera as a video output. The recorded video is then processed and converted to an image light intensity vs retention time plot (gas chromatogram) using three standard color space models (red, green, blue (RGB), hue, saturation, lightness (HSL), and hue, saturation, value (HSV)) with RGB performing the best among the three models. We successfully detected three different categories of volatile organic compounds using our new detection scheme and a 30-m-long gas chromatography column: (1) straight-chain alkanes (<i>n</i>-pentane, <i>n</i>-hexane, <i>n</i>-heptane, <i>n</i>-octane, and <i>n</i>-nonane), (2) aromatics (benzene, toluene, and ethylbenzene), and (3) polar compounds (acetone, ethanol, and dichloromethane). The best limit of detection of 10 ng was achieved for benzene at room temperature. Additionally, the device showed excellent performance for different types of sample mixtures consisting of three and five compounds. Our new detector readout method combined with our ability to print complex glass structures provides a new research avenue to analyze complex gas mixtures and their components.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00012","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we report on a printable glass-based manufacturing method and a new proof-of-concept colorimetric signal readout scheme for a dielectric barrier discharge (DBD)-type helium plasma photoionization detector. The sensor consists of a millimeter-sized glass chamber manufactured using a printable glass suspension. Plasma inside the chip is generated using a custom-built power supply (900 V and 83.6 kHz), and the detector uses ∼5 W of power. Our new detection scheme is based on detecting the change in the color of plasma after the introduction of target gases. The change in color is first captured by a smartphone camera as a video output. The recorded video is then processed and converted to an image light intensity vs retention time plot (gas chromatogram) using three standard color space models (red, green, blue (RGB), hue, saturation, lightness (HSL), and hue, saturation, value (HSV)) with RGB performing the best among the three models. We successfully detected three different categories of volatile organic compounds using our new detection scheme and a 30-m-long gas chromatography column: (1) straight-chain alkanes (n-pentane, n-hexane, n-heptane, n-octane, and n-nonane), (2) aromatics (benzene, toluene, and ethylbenzene), and (3) polar compounds (acetone, ethanol, and dichloromethane). The best limit of detection of 10 ng was achieved for benzene at room temperature. Additionally, the device showed excellent performance for different types of sample mixtures consisting of three and five compounds. Our new detector readout method combined with our ability to print complex glass structures provides a new research avenue to analyze complex gas mixtures and their components.

Abstract Image

使用可印刷玻璃基介电阻挡放电型氦等离子体探测器检测挥发性有机化合物的比色信号读出
在本文中,我们报道了一种基于可打印玻璃的制造方法和一种用于介质阻挡放电(DBD)型氦等离子体光电离检测器的新的概念验证比色信号读出方案。传感器由一个毫米大小的玻璃室组成,该玻璃室使用可打印的玻璃悬浮液制造。芯片内部的等离子体是使用定制的电源(900 V和83.6 kHz)产生的,探测器使用~5 W的功率。我们的新检测方案是基于检测引入目标气体后等离子体颜色的变化。颜色的变化首先由智能手机摄像头捕捉到,作为视频输出。然后,使用三个标准颜色空间模型(红、绿、蓝(RGB)、色调、饱和度、亮度(HSL)和色调、饱和度和值(HSV))处理记录的视频并将其转换为图像光强度与保留时间的关系图(气相色谱图),其中RGB在这三个模型中表现最好。我们使用新的检测方案和30米长的气相色谱柱成功检测了三种不同类别的挥发性有机化合物:(1)直链烷烃(正戊烷、正己烷、正庚烷、正辛烷和正壬烷),(2)芳烃(苯、甲苯和乙苯),以及(3)极性化合物(丙酮、乙醇和二氯甲烷)。苯在室温下的最佳检测限为10ng。此外,该装置对由三种和五种化合物组成的不同类型的样品混合物表现出优异的性能。我们新的探测器读出方法与我们打印复杂玻璃结构的能力相结合,为分析复杂气体混合物及其成分提供了一条新的研究途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信