Deepanjalee Dutta, Nina Graupner, Jörg Müssig and Dorothea Brüggemann*,
{"title":"Assembly of Rolled-Up Collagen Constructs on Porous Alumina Textiles","authors":"Deepanjalee Dutta, Nina Graupner, Jörg Müssig and Dorothea Brüggemann*, ","doi":"10.1021/acsnanoscienceau.3c00008","DOIUrl":null,"url":null,"abstract":"<p >Developing new techniques to prepare free-standing tubular scaffolds has always been a challenge in the field of regenerative medicine. Here, we report a new and simple way to prepare free-standing collagen constructs with rolled-up architecture by self-assembling nanofibers on porous alumina (Al<sub>2</sub>O<sub>3</sub>) textiles modified with different silanes, carbon or gold. Following self-assembly and cross-linking with glutaraldehyde, collagen nanofibers spontaneously rolled up on the modified Al<sub>2</sub>O<sub>3</sub> textiles and detached. The resulting collagen constructs had an inner diameter of approximately 2 to 4 mm in a rolled-up state and could be easily detached from the underlying textiles. Mechanical testing of wet collagen scaffolds following detachment yielded mean values of 3.5 ± 1.9 MPa for the tensile strength, 41.0 ± 20.8 MPa for the Young’s modulus and 8.1 ± 3.7% for the elongation at break. No roll-up was observed on Al<sub>2</sub>O<sub>3</sub> textiles without any modification, where collagen did not assemble into fibers, either. Blends of collagen and chitosan were also found to roll into fibrous constructs on silanized Al<sub>2</sub>O<sub>3</sub> textiles, while fibrinogen nanofibers or blends of collagen and elastin did not yield such structures. Based on these differences, we hypothesize that textile surface charge and protein charge, in combination with the porous architecture of protein nanofibers and differences in mechanical strain, are key factors in inducing a scaffold roll-up. Further studies are required to develop the observed roll-up effect into a reproducible biofabrication process that can enable the controlled production of free-standing collagen-based tubes for soft tissue engineering.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 4","pages":"286–294"},"PeriodicalIF":4.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9c/8b/ng3c00008.PMC10436369.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing new techniques to prepare free-standing tubular scaffolds has always been a challenge in the field of regenerative medicine. Here, we report a new and simple way to prepare free-standing collagen constructs with rolled-up architecture by self-assembling nanofibers on porous alumina (Al2O3) textiles modified with different silanes, carbon or gold. Following self-assembly and cross-linking with glutaraldehyde, collagen nanofibers spontaneously rolled up on the modified Al2O3 textiles and detached. The resulting collagen constructs had an inner diameter of approximately 2 to 4 mm in a rolled-up state and could be easily detached from the underlying textiles. Mechanical testing of wet collagen scaffolds following detachment yielded mean values of 3.5 ± 1.9 MPa for the tensile strength, 41.0 ± 20.8 MPa for the Young’s modulus and 8.1 ± 3.7% for the elongation at break. No roll-up was observed on Al2O3 textiles without any modification, where collagen did not assemble into fibers, either. Blends of collagen and chitosan were also found to roll into fibrous constructs on silanized Al2O3 textiles, while fibrinogen nanofibers or blends of collagen and elastin did not yield such structures. Based on these differences, we hypothesize that textile surface charge and protein charge, in combination with the porous architecture of protein nanofibers and differences in mechanical strain, are key factors in inducing a scaffold roll-up. Further studies are required to develop the observed roll-up effect into a reproducible biofabrication process that can enable the controlled production of free-standing collagen-based tubes for soft tissue engineering.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.