Effects of Immune Cell Heterogeneity and Protein Corona on the Cellular Association and Cytotoxicity of Gold Nanoparticles: A Single-Cell-Based, High-Dimensional Mass Cytometry Study
Sehee Park, My Kieu Ha, Yangsoon Lee, Jaewoo Song and Tae Hyun Yoon*,
{"title":"Effects of Immune Cell Heterogeneity and Protein Corona on the Cellular Association and Cytotoxicity of Gold Nanoparticles: A Single-Cell-Based, High-Dimensional Mass Cytometry Study","authors":"Sehee Park, My Kieu Ha, Yangsoon Lee, Jaewoo Song and Tae Hyun Yoon*, ","doi":"10.1021/acsnanoscienceau.3c00001","DOIUrl":null,"url":null,"abstract":"<p >Understanding how nanoparticles (NPs) interact with biological systems is important in many biomedical research areas. However, the heterogeneous nature of biological systems, including the existence of numerous cell types and multitudes of key environmental factors, makes these interactions extremely challenging to investigate precisely. Here, using a single-cell-based, high-dimensional mass cytometry approach, we demonstrated that the presence of protein corona has significant influences on the cellular associations and cytotoxicity of gold NPs for human immune cells, and those effects vary significantly with the types of immune cells and their subsets. The altered surface functionality of protein corona reduced the cytotoxicity and cellular association of gold NPs in most cell types (e.g., monocytes, dendritic cells, B cells, natural killer (NK) cells, and T cells) and those immune cells selected different endocytosis pathways such as receptor-mediated endocytosis, phagocytosis, and micropinocytosis. However, even slight alterations in the major cell type (phagocytic cells and non-phagocytic cells) and T cell subsets (e.g., memory and naive T cells) resulted in significant protein corona-dependent variations in their cellular dose of gold NPs. Especially, naive T killer cells exhibited additional heterogeneity than memory T killer cells, with clusters exhibiting distinct cellular association patterns in single-cell contour plots. This multi-parametric analysis of mass cytometry data established a conceptual framework for a more holistic understanding of how the human immune system responds to external stimuli, paving the way for the application of precisely engineered NPs as promising tools of nanomedicine under various clinical settings, including targeted drug delivery and vaccine development.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 4","pages":"323–334"},"PeriodicalIF":4.8000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/88/3c/ng3c00001.PMC10436372.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how nanoparticles (NPs) interact with biological systems is important in many biomedical research areas. However, the heterogeneous nature of biological systems, including the existence of numerous cell types and multitudes of key environmental factors, makes these interactions extremely challenging to investigate precisely. Here, using a single-cell-based, high-dimensional mass cytometry approach, we demonstrated that the presence of protein corona has significant influences on the cellular associations and cytotoxicity of gold NPs for human immune cells, and those effects vary significantly with the types of immune cells and their subsets. The altered surface functionality of protein corona reduced the cytotoxicity and cellular association of gold NPs in most cell types (e.g., monocytes, dendritic cells, B cells, natural killer (NK) cells, and T cells) and those immune cells selected different endocytosis pathways such as receptor-mediated endocytosis, phagocytosis, and micropinocytosis. However, even slight alterations in the major cell type (phagocytic cells and non-phagocytic cells) and T cell subsets (e.g., memory and naive T cells) resulted in significant protein corona-dependent variations in their cellular dose of gold NPs. Especially, naive T killer cells exhibited additional heterogeneity than memory T killer cells, with clusters exhibiting distinct cellular association patterns in single-cell contour plots. This multi-parametric analysis of mass cytometry data established a conceptual framework for a more holistic understanding of how the human immune system responds to external stimuli, paving the way for the application of precisely engineered NPs as promising tools of nanomedicine under various clinical settings, including targeted drug delivery and vaccine development.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.