{"title":"Total Energy Expenditure in Healthy Ambulatory Older Adults Aged ≥80 Years: A Doubly Labelled Water Study.","authors":"Kay Nguo, Helen Truby, Judi Porter","doi":"10.1159/000528872","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The life expectancy of older adults continues to increase; however, knowledge regarding their total energy requirements is lacking. This study aimed to compare the total energy expenditure (TEE) of older adults ≥80 years measured using doubly labelled water (DLW), with estimated TEE. The hypothesis was that the Mifflin, Ikeda, and Livingston equations will more closely estimate energy requirements than the commonly used Schofield equation.</p><p><strong>Methods: </strong>Resting metabolic rate (RMR) and TEE were measured using the reference methods of indirect calorimetry and DLW, respectively. Bland-Altman plots compared measured RMR and TEE with predicted RMR using equations (Mifflin, Ikeda, Livingston, Schofield) and predicted TEE (predicted RMR × physical activity level).</p><p><strong>Results: </strong>Twenty-one older adults (age range 80.7-90.1 years, BMI 26.1 ± 5.5 kg/m2) were included. The Schofield equation demonstrated the greatest bias from measured RMR, overestimating approximately up to double the mean difference (865 ± 662 kJ/day) compared with the three other equations. The Schofield equation exhibited the greatest bias (overestimation of 641 ± 1,066 kJ/day) compared with measured TEE. The other three equations underestimated TEE, with the least bias from Ikeda (37 ± 1,103 kJ/day), followed by Livingston (251 ± 1,108 kJ/day), and Mifflin (354 ± 1,140 kJ/day). Data are mean ± SD.</p><p><strong>Conclusions: </strong>In older adults ≥80 years, the Ikeda, Mifflin, and Livingston equations provide closer estimates of TEE than the widely used Schofield equation. The development of nutrition guidelines therefore should consider the utilization of equations which more accurately reflect age-specific requirements.</p>","PeriodicalId":8269,"journal":{"name":"Annals of Nutrition and Metabolism","volume":"79 2","pages":"263-273"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nutrition and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000528872","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The life expectancy of older adults continues to increase; however, knowledge regarding their total energy requirements is lacking. This study aimed to compare the total energy expenditure (TEE) of older adults ≥80 years measured using doubly labelled water (DLW), with estimated TEE. The hypothesis was that the Mifflin, Ikeda, and Livingston equations will more closely estimate energy requirements than the commonly used Schofield equation.
Methods: Resting metabolic rate (RMR) and TEE were measured using the reference methods of indirect calorimetry and DLW, respectively. Bland-Altman plots compared measured RMR and TEE with predicted RMR using equations (Mifflin, Ikeda, Livingston, Schofield) and predicted TEE (predicted RMR × physical activity level).
Results: Twenty-one older adults (age range 80.7-90.1 years, BMI 26.1 ± 5.5 kg/m2) were included. The Schofield equation demonstrated the greatest bias from measured RMR, overestimating approximately up to double the mean difference (865 ± 662 kJ/day) compared with the three other equations. The Schofield equation exhibited the greatest bias (overestimation of 641 ± 1,066 kJ/day) compared with measured TEE. The other three equations underestimated TEE, with the least bias from Ikeda (37 ± 1,103 kJ/day), followed by Livingston (251 ± 1,108 kJ/day), and Mifflin (354 ± 1,140 kJ/day). Data are mean ± SD.
Conclusions: In older adults ≥80 years, the Ikeda, Mifflin, and Livingston equations provide closer estimates of TEE than the widely used Schofield equation. The development of nutrition guidelines therefore should consider the utilization of equations which more accurately reflect age-specific requirements.
期刊介绍:
''Annals of Nutrition and Metabolism'' is a leading international peer-reviewed journal for sharing information on human nutrition, metabolism and related fields, covering the broad and multidisciplinary nature of science in nutrition and metabolism. As the official journal of both the International Union of Nutritional Sciences (IUNS) and the Federation of European Nutrition Societies (FENS), the journal has a high visibility among both researchers and users of research outputs, including policy makers, across Europe and around the world.