A combined treatment with progesterone, anti-inhibin serum, and equine chorionic gonadotropin improves number of ovulated oocytes in young C57BL/6J mice.
IF 1.9 4区 生物学Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
{"title":"A combined treatment with progesterone, anti-inhibin serum, and equine chorionic gonadotropin improves number of ovulated oocytes in young C57BL/6J mice.","authors":"Atsuko Kageyama, Mizuho Tsuchiya, Jumpei Terakawa, Junya Ito, Naomi Kashiwazaki","doi":"10.1262/jrd.2023-036","DOIUrl":null,"url":null,"abstract":"<p><p>Superovulation procedures are routinely and widely used in mouse reproductive technology. Previous studies have shown that a large number of oocytes can be obtained from adult mice (> 10 weeks old) using a combined treatment with progesterone (P4) and anti-inhibin serum (AIS). However, these effects have not been fully investigated in young (4 weeks) C57BL/6J mice. Here, we found that a modified superovulation protocol (combined treatment with P4, AIS, eCG (equine chorionic gonadotropin), and hCG (human chorionic gonadotropin); P4D2-Ae-h) improved the number of oocytes compared to the control (eCG and hCG) (39.7 vs. 21.3 oocytes/mouse). After in vitro fertilization, pronuclear formation rates were 69.3% (P4D2-Ae-h group) and 66.2% (control group). After embryo transfer, 46.4% (116/250) of the embryos in the P4D2-Ae-h group successfully developed to term, which was comparable to the control group (42.9%; 123/287 embryos). In conclusion, our protocol (P4D2-Ae-h) was effective for superovulation in young C57BL/6J mice.</p>","PeriodicalId":16942,"journal":{"name":"Journal of Reproduction and Development","volume":"69 4","pages":"223-226"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/72/jrd-69-223.PMC10435527.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2023-036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Superovulation procedures are routinely and widely used in mouse reproductive technology. Previous studies have shown that a large number of oocytes can be obtained from adult mice (> 10 weeks old) using a combined treatment with progesterone (P4) and anti-inhibin serum (AIS). However, these effects have not been fully investigated in young (4 weeks) C57BL/6J mice. Here, we found that a modified superovulation protocol (combined treatment with P4, AIS, eCG (equine chorionic gonadotropin), and hCG (human chorionic gonadotropin); P4D2-Ae-h) improved the number of oocytes compared to the control (eCG and hCG) (39.7 vs. 21.3 oocytes/mouse). After in vitro fertilization, pronuclear formation rates were 69.3% (P4D2-Ae-h group) and 66.2% (control group). After embryo transfer, 46.4% (116/250) of the embryos in the P4D2-Ae-h group successfully developed to term, which was comparable to the control group (42.9%; 123/287 embryos). In conclusion, our protocol (P4D2-Ae-h) was effective for superovulation in young C57BL/6J mice.
期刊介绍:
Journal of Reproduction and Development (JRD) is the
official journal of the Society for Reproduction and Development,
published bimonthly, and welcomes original articles. JRD
provides free full-text access of all the published articles on
the web. The functions of the journal are managed by Editorial
Board Members, such as the Editor-in-Chief, Co-Editor-inChief, Managing Editors and Editors. All manuscripts are
peer-reviewed critically by two or more reviewers. Acceptance
is based on scientific content and presentation of the materials.
The Editors select reviewers and correspond with authors. Final
decisions about acceptance or rejection of manuscripts are made
by the Editor-in-Chief and Co-Editor-in-Chief.