Yubin Li, Shiyao Wang, Jinhua Hong, Nannan Zhang, Xin Wei, Tao Zhu, Yao Zhang, Zhuo Xu, Kaiqiang Liu, Man Jiang, Hua Xu
{"title":"Polarization-Sensitive Photodetector Based on High Crystallinity Quasi-1D BiSeI Nanowires Synthesized via Chemical Vapor Deposition","authors":"Yubin Li, Shiyao Wang, Jinhua Hong, Nannan Zhang, Xin Wei, Tao Zhu, Yao Zhang, Zhuo Xu, Kaiqiang Liu, Man Jiang, Hua Xu","doi":"10.1002/smll.202302623","DOIUrl":null,"url":null,"abstract":"<p>Bismuth chalcohalides (BiSeI and BiSI), a class of superior light absorbers, have recently garnered great attention owing to their promise in constructing next-generation optoelectronic devices. However, to date, the photodetection application of bismuth chalcohalides is still limited due to the challenge in controllable preparation. Herein, the synthesis of large-scale quasi-1D BiSeI nanowires via chemical vapor deposition growth is reported. By precisely tuning the growth temperature and the Se supply, it can effectively control the growth thermodynamics and kinetics of BiSeI crystal, and thus achieve high purity quasi-1D BiSeI nanowires with high crystal quality, uniform diameter, and tunable domain length. Theory and optical characterizations of the quasi-1D BiSeI nanowires reveal an indirect bandgap of 1.57 eV with prominent optical linear dichroism. As a result, the quasi-1D BiSeI nanowire-based photodetector demonstrates a broadband photoresponse (400–800 nm) with high responsivity of 5880 mA W<sup>−1</sup>, fast response speed of 0.11 ms and superior air stability. More importantly, the photodetector displays strong polarization sensitivity (anisotropic ratio = 1.77) under the 532 nm light irradiation. This work will provide important guides to the synthesis of other quais-1D metal chalcohalides and shed light on their potential in constructing novel multifunctional optoelectronic devices.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"19 43","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202302623","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Bismuth chalcohalides (BiSeI and BiSI), a class of superior light absorbers, have recently garnered great attention owing to their promise in constructing next-generation optoelectronic devices. However, to date, the photodetection application of bismuth chalcohalides is still limited due to the challenge in controllable preparation. Herein, the synthesis of large-scale quasi-1D BiSeI nanowires via chemical vapor deposition growth is reported. By precisely tuning the growth temperature and the Se supply, it can effectively control the growth thermodynamics and kinetics of BiSeI crystal, and thus achieve high purity quasi-1D BiSeI nanowires with high crystal quality, uniform diameter, and tunable domain length. Theory and optical characterizations of the quasi-1D BiSeI nanowires reveal an indirect bandgap of 1.57 eV with prominent optical linear dichroism. As a result, the quasi-1D BiSeI nanowire-based photodetector demonstrates a broadband photoresponse (400–800 nm) with high responsivity of 5880 mA W−1, fast response speed of 0.11 ms and superior air stability. More importantly, the photodetector displays strong polarization sensitivity (anisotropic ratio = 1.77) under the 532 nm light irradiation. This work will provide important guides to the synthesis of other quais-1D metal chalcohalides and shed light on their potential in constructing novel multifunctional optoelectronic devices.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.