Thrombin - A Molecular Dynamics Perspective.

IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Dizhou Wu, Athul Prem, Jiajie Xiao, Freddie R Salsbury
{"title":"Thrombin - A Molecular Dynamics Perspective.","authors":"Dizhou Wu, Athul Prem, Jiajie Xiao, Freddie R Salsbury","doi":"10.2174/1389557523666230821102655","DOIUrl":null,"url":null,"abstract":"<p><p>Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na<sup>+</sup> binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"1112-1124"},"PeriodicalIF":3.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389557523666230821102655","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na+ binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.

凝血酶--分子动力学视角。
凝血酶是一种参与血液凝固的重要酶,对维持循环系统的完整性和防止过度出血至关重要。然而,凝血酶也与血栓形成和癌症等病理情况有关。尽管应用了各种实验技术,包括 X 射线晶体学、核磁共振光谱和 HDXMS,但这些方法都无法在高空间和时间分辨率下精确检测凝血酶的动态和构象组合。幸运的是,分子动力学(MD)模拟是一种计算技术,可以研究原子细节的分子功能和动力学,可用于探索凝血酶的行为。本综述总结了近期有关凝血酶及其与其他生物大分子相互作用的分子动力学模拟研究。具体来说,本文讨论的 17 项研究深入探讨了凝血酶在 "慢 "和 "快 "形态之间的切换、活性和非活性形态、Na+ 结合的作用、轻链突变的影响以及凝血酶与其他生物大分子的相互作用。这些研究结果对开发治疗血栓和癌症的新疗法具有重要意义。通过了解凝血酶的复杂行为,研究人员可以设计出针对凝血酶的更有效的药物和治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
231
审稿时长
6 months
期刊介绍: The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines. Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies. Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信