Shou-Song Xuan, Yue Zhao, Yan Zheng, Jing Zhu, Han Li, Ping-Ping Lu, Shui-Jin Shao, Hai-Dong Guo, Fang-Fang Mou
{"title":"Electroacupuncture improves cardiac function after myocardial infarction by regulating the mobilization and migration of endogenous stem cells.","authors":"Shou-Song Xuan, Yue Zhao, Yan Zheng, Jing Zhu, Han Li, Ping-Ping Lu, Shui-Jin Shao, Hai-Dong Guo, Fang-Fang Mou","doi":"10.1177/09645284231169485","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to explore the role and mechanisms of electroacupuncture (EA) in the regulation of chemokines in endogenous stem cell mobilization and myocardial regeneration after myocardial infarction (MI).</p><p><strong>Methods: </strong>An MI model was constructed in adult male Sprague-Dawley rats by ligating the left anterior descending coronary artery. After 4 weeks of treatment, echocardiography was used to detect changes in cardiac function, and Masson's trichrome staining was used to detect collagen deposition. In addition, immunofluorescence staining was applied to examine von Willebrand factor (vWF)-positive vessels, the expression of cardiac troponin T (cTnT) and proliferation marker Ki67, and the number of c-kit-positive, C-X-C chemokine receptor type 4 (CXCR4)-positive, and Sca-1-positive endogenous stem cells in the infarcted area. In addition, the expression of stromal cell-derived factor (SDF)-1 and stem cell factor (SCF) was detected.</p><p><strong>Results: </strong>EA increased the ejection fraction after MI, reduced collagen deposition and cellular apoptosis, and increased the number of blood vessels compared with an untreated model group. EA significantly promoted cellular proliferation, except for myocardial cells, and significantly increased the number of c-kit-, CXCR4- and Sca-1-positive stem cells. Moreover, the expression of SDF-1 and SCF in myocardial tissue in the EA group was significantly higher than that in the (untreated) MI group.</p><p><strong>Conclusions: </strong>EA appears to promote angiogenesis and reduce collagen deposition, thus improving the cardiac function of rats with MI. The underlying mechanism of action may involve endogenous stem cell mobilization mediated by SDF-1/CXCR4 and SCF/c-kit.</p>","PeriodicalId":7257,"journal":{"name":"Acupuncture in Medicine","volume":" ","pages":"354-363"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acupuncture in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09645284231169485","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The aim of this study was to explore the role and mechanisms of electroacupuncture (EA) in the regulation of chemokines in endogenous stem cell mobilization and myocardial regeneration after myocardial infarction (MI).
Methods: An MI model was constructed in adult male Sprague-Dawley rats by ligating the left anterior descending coronary artery. After 4 weeks of treatment, echocardiography was used to detect changes in cardiac function, and Masson's trichrome staining was used to detect collagen deposition. In addition, immunofluorescence staining was applied to examine von Willebrand factor (vWF)-positive vessels, the expression of cardiac troponin T (cTnT) and proliferation marker Ki67, and the number of c-kit-positive, C-X-C chemokine receptor type 4 (CXCR4)-positive, and Sca-1-positive endogenous stem cells in the infarcted area. In addition, the expression of stromal cell-derived factor (SDF)-1 and stem cell factor (SCF) was detected.
Results: EA increased the ejection fraction after MI, reduced collagen deposition and cellular apoptosis, and increased the number of blood vessels compared with an untreated model group. EA significantly promoted cellular proliferation, except for myocardial cells, and significantly increased the number of c-kit-, CXCR4- and Sca-1-positive stem cells. Moreover, the expression of SDF-1 and SCF in myocardial tissue in the EA group was significantly higher than that in the (untreated) MI group.
Conclusions: EA appears to promote angiogenesis and reduce collagen deposition, thus improving the cardiac function of rats with MI. The underlying mechanism of action may involve endogenous stem cell mobilization mediated by SDF-1/CXCR4 and SCF/c-kit.
期刊介绍:
Acupuncture in Medicine aims to promote the scientific understanding of acupuncture and related treatments by publishing scientific investigations of their effectiveness and modes of action as well as articles on their use in health services and clinical practice. Acupuncture in Medicine uses the Western understanding of neurophysiology and anatomy to interpret the effects of acupuncture.