From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering.

2区 生物学 Q1 Immunology and Microbiology
Advances in applied microbiology Pub Date : 2023-01-01 Epub Date: 2023-07-21 DOI:10.1016/bs.aambs.2023.07.004
Caihong Weng, Xiaowei Peng, Yejun Han
{"title":"From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering.","authors":"Caihong Weng,&nbsp;Xiaowei Peng,&nbsp;Yejun Han","doi":"10.1016/bs.aambs.2023.07.004","DOIUrl":null,"url":null,"abstract":"<p><p>Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"124 ","pages":"119-146"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2023.07.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.

从甲烷到增值生物产品:微生物代谢、酶和代谢工程。
甲烷在自然界中含量丰富,过量排放会造成温室效应。甲烷也是生物合成的理想碳和能源原料。综述了甲烷利用的微生物、代谢和酶,以及转化为高附加值生物产品的进展。首先,介绍了甲烷氧化菌的生理特性、分类和甲烷氧化过程。综述了天然和人工产甲烷菌甲烷利用的代谢途径和关键中间代谢产物。其次,介绍了甲烷氧化代谢酶的酶学性质、晶体结构和催化机理。第三,讨论了甲烷利用和转化为增值生物产品的代谢途径和酶催化方面的挑战和前景。最后,总结了基于不同途径的微生物代谢工程用于甲烷生物氧化和生物产物合成。了解微生物甲烷利用的代谢和挑战将为高效甲烷合成的可能策略提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in applied microbiology
Advances in applied microbiology 生物-生物工程与应用微生物
CiteScore
8.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive. Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信