Lana Vasung, Junshen Xu, Esra Abaci-Turk, Cindy Zhou, Elizabeth Holland, William H Barth, Carol Barnewolt, Susan Connolly, Judy Estroff, Polina Golland, Henry A Feldman, Elfar Adalsteinsson, P Ellen Grant
{"title":"Cross-Sectional Observational Study of Typical in utero Fetal Movements Using Machine Learning.","authors":"Lana Vasung, Junshen Xu, Esra Abaci-Turk, Cindy Zhou, Elizabeth Holland, William H Barth, Carol Barnewolt, Susan Connolly, Judy Estroff, Polina Golland, Henry A Feldman, Elfar Adalsteinsson, P Ellen Grant","doi":"10.1159/000528757","DOIUrl":null,"url":null,"abstract":"<p><p>Early variations of fetal movements are the hallmark of a healthy developing central nervous system. However, there are no automatic methods to quantify the complex 3D motion of the developing fetus in utero. The aim of this prospective study was to use machine learning (ML) on in utero MRI to perform quantitative kinematic analysis of fetal limb movement, assessing the impact of maternal, placental, and fetal factors. In this cross-sectional, observational study, we used 76 sets of fetal (24-40 gestational weeks [GW]) blood oxygenation level-dependent (BOLD) MRI scans of 52 women (18-45 years old) during typical pregnancies. Pregnant women were scanned for 5-10 min while breathing room air (21% O2) and for 5-10 min while breathing 100% FiO2 in supine and/or lateral position. BOLD acquisition time was 20 min in total with effective temporal resolution approximately 3 s. To quantify upper and lower limb kinematics, we used a 3D convolutional neural network previously trained to track fetal key points (wrists, elbows, shoulders, ankles, knees, hips) on similar BOLD time series. Tracking was visually assessed, errors were manually corrected, and the absolute movement time (AMT) for each joint was calculated. To identify variables that had a significant association with AMT, we constructed a mixed-model ANOVA with interaction terms. Fetuses showed significantly longer duration of limb movements during maternal hyperoxia. We also found a significant centrifugal increase of AMT across limbs and significantly longer AMT of upper extremities <31 GW and longer AMT of lower extremities >35 GW. In conclusion, using ML we successfully quantified complex 3D fetal limb motion in utero and across gestation, showing maternal factors (hyperoxia) and fetal factors (gestational age, joint) that impact movement. Quantification of fetal motion on MRI is a potential new biomarker of fetal health and neuromuscular development.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 3","pages":"105-114"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000528757","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early variations of fetal movements are the hallmark of a healthy developing central nervous system. However, there are no automatic methods to quantify the complex 3D motion of the developing fetus in utero. The aim of this prospective study was to use machine learning (ML) on in utero MRI to perform quantitative kinematic analysis of fetal limb movement, assessing the impact of maternal, placental, and fetal factors. In this cross-sectional, observational study, we used 76 sets of fetal (24-40 gestational weeks [GW]) blood oxygenation level-dependent (BOLD) MRI scans of 52 women (18-45 years old) during typical pregnancies. Pregnant women were scanned for 5-10 min while breathing room air (21% O2) and for 5-10 min while breathing 100% FiO2 in supine and/or lateral position. BOLD acquisition time was 20 min in total with effective temporal resolution approximately 3 s. To quantify upper and lower limb kinematics, we used a 3D convolutional neural network previously trained to track fetal key points (wrists, elbows, shoulders, ankles, knees, hips) on similar BOLD time series. Tracking was visually assessed, errors were manually corrected, and the absolute movement time (AMT) for each joint was calculated. To identify variables that had a significant association with AMT, we constructed a mixed-model ANOVA with interaction terms. Fetuses showed significantly longer duration of limb movements during maternal hyperoxia. We also found a significant centrifugal increase of AMT across limbs and significantly longer AMT of upper extremities <31 GW and longer AMT of lower extremities >35 GW. In conclusion, using ML we successfully quantified complex 3D fetal limb motion in utero and across gestation, showing maternal factors (hyperoxia) and fetal factors (gestational age, joint) that impact movement. Quantification of fetal motion on MRI is a potential new biomarker of fetal health and neuromuscular development.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.