{"title":"Meta semi-supervised medical image segmentation with label hierarchy.","authors":"Hai Xu, Hongtao Xie, Qingfeng Tan, Yongdong Zhang","doi":"10.1007/s13755-023-00222-1","DOIUrl":null,"url":null,"abstract":"<p><p>Semi-supervised learning (SSL) has attracted increasing attention in medical image segmentation, where the mainstream usually explores perturbation-based consistency as a regularization to leverage unlabelled data. However, unlike directly optimizing segmentation task objectives, consistency regularization is a compromise by incorporating invariance towards perturbations, and inevitably suffers from noise in self-predicted targets. The above issues result in a knowledge gap between supervised guidance and unsupervised regularization. To bridge the knowledge gap, this work proposes a meta-based semi-supervised segmentation framework with the exploitation of label hierarchy. Two main prominent components named <i>Divide and Generalize</i>, and <i>Label Hierarchy</i>, are built in this work. Concretely, rather than merging all knowledge indiscriminately, we dynamically divide consistency regularization from supervised guidance as different domains. Then, a domain generalization technique is introduced with a meta-based optimization objective which ensures the update on supervised guidance should generalize to the consistency regularization, thereby bridging the knowledge gap. Furthermore, to alleviate the negative impact of noise in self-predicted targets, we propose to distill the noisy pixel-level consistency by exploiting label hierarchy and extracting hierarchical consistencies. Comprehensive experiments on two public medical segmentation benchmarks demonstrate the superiority of our framework to other semi-supervised segmentation methods, with new state-of-the-art results.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"26"},"PeriodicalIF":3.4000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00222-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-supervised learning (SSL) has attracted increasing attention in medical image segmentation, where the mainstream usually explores perturbation-based consistency as a regularization to leverage unlabelled data. However, unlike directly optimizing segmentation task objectives, consistency regularization is a compromise by incorporating invariance towards perturbations, and inevitably suffers from noise in self-predicted targets. The above issues result in a knowledge gap between supervised guidance and unsupervised regularization. To bridge the knowledge gap, this work proposes a meta-based semi-supervised segmentation framework with the exploitation of label hierarchy. Two main prominent components named Divide and Generalize, and Label Hierarchy, are built in this work. Concretely, rather than merging all knowledge indiscriminately, we dynamically divide consistency regularization from supervised guidance as different domains. Then, a domain generalization technique is introduced with a meta-based optimization objective which ensures the update on supervised guidance should generalize to the consistency regularization, thereby bridging the knowledge gap. Furthermore, to alleviate the negative impact of noise in self-predicted targets, we propose to distill the noisy pixel-level consistency by exploiting label hierarchy and extracting hierarchical consistencies. Comprehensive experiments on two public medical segmentation benchmarks demonstrate the superiority of our framework to other semi-supervised segmentation methods, with new state-of-the-art results.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.