Voltammetric determination of hydrochlorothiazide at a modified carbon paste electrode with polypyrrole nanotubes.

IF 3.4 Q2 CHEMISTRY, MEDICINAL
ADMET and DMPK Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI:10.5599/admet.1706
Arefeh Mohammadnavaz, Fariba Garkani-Nejad
{"title":"Voltammetric determination of hydrochlorothiazide at a modified carbon paste electrode with polypyrrole nanotubes.","authors":"Arefeh Mohammadnavaz,&nbsp;Fariba Garkani-Nejad","doi":"10.5599/admet.1706","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the electrochemical behavior of hydrochlorothiazide (HCTZ) is described using carbon paste electrodes modified with polypyrrole nanotubes (PPy-NTs/CPEs) at pH value 7. Experiments revealed that the presence of HCTZ greatly impacts the electrochemical behavior of modified CPEs. The synthesized PPy-NTs were utilized as a sensing material for the electrochemical detection of HCTZ and were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. The key experiment conditions, including supporting electrolyte and electrolyte pH, were studied and optimized. Under optimized conditions, the prepared sensor displayed the linear relationships for the concentrations of HCTZ from 5.0 to 400.0 μM (R<sup>2</sup> = 0.9984). The detection limit of the PPy-NTs/CPEs sensor was found to be 1.5 μM using the DPV method. The PPy-NTs is highly selective, stable and sensitive for the determination of HCT. Therefore, we believe the newly prepared PPy-NTs material can be useful for different electrochemical applications.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 2","pages":"293-302"},"PeriodicalIF":3.4000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262231/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.1706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the electrochemical behavior of hydrochlorothiazide (HCTZ) is described using carbon paste electrodes modified with polypyrrole nanotubes (PPy-NTs/CPEs) at pH value 7. Experiments revealed that the presence of HCTZ greatly impacts the electrochemical behavior of modified CPEs. The synthesized PPy-NTs were utilized as a sensing material for the electrochemical detection of HCTZ and were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. The key experiment conditions, including supporting electrolyte and electrolyte pH, were studied and optimized. Under optimized conditions, the prepared sensor displayed the linear relationships for the concentrations of HCTZ from 5.0 to 400.0 μM (R2 = 0.9984). The detection limit of the PPy-NTs/CPEs sensor was found to be 1.5 μM using the DPV method. The PPy-NTs is highly selective, stable and sensitive for the determination of HCT. Therefore, we believe the newly prepared PPy-NTs material can be useful for different electrochemical applications.

Abstract Image

Abstract Image

Abstract Image

聚吡咯纳米管修饰碳糊电极伏安法测定氢氯噻嗪。
本文研究了氢氯噻嗪(HCTZ)在pH值为7时,用聚吡咯纳米管(PPy-NTs/CPE)修饰的碳糊电极的电化学行为。实验表明,HCTZ的存在极大地影响了改性CPE的电化学行为。将合成的PPy-NTs用作电化学检测HCTZ的传感材料,并通过循环伏安法(CV)、微分脉冲伏安法(DPV)和计时电流法进行了研究。对支撑电解质和电解质pH等关键实验条件进行了研究和优化。在优化的条件下,所制备的传感器在5.0至400.0μM的HCTZ浓度范围内显示出线性关系(R2=0.9984)。使用DPV方法,PPy-NTs/CPEs传感器的检测限为1.5μM。PPy-NTs对HCT的测定具有高度选择性、稳定性和敏感性。因此,我们相信新制备的PPy-NTs材料可以用于不同的电化学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ADMET and DMPK
ADMET and DMPK Multiple-
CiteScore
4.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
期刊介绍: ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信