A method for obtaining object defocus information in the RC observation mode

IF 2.5 3区 工程技术 Q1 MICROSCOPY
Yongxing Zhang , Zhenxing Shi , Huiquan Wang
{"title":"A method for obtaining object defocus information in the RC observation mode","authors":"Yongxing Zhang ,&nbsp;Zhenxing Shi ,&nbsp;Huiquan Wang","doi":"10.1016/j.micron.2023.103519","DOIUrl":null,"url":null,"abstract":"<div><p>The micro-operation robot is widely used in micro-manipulations of biological cells in biological and medical experiments. It plans and controls micro-effector movement based on image feedback information to achieve micro-operations. However, the displacement information of the micro-effector on the x-y plane can be obtained from the image, but not the position information of the micro-effector in the z-axis direction. This makes the micro-effector movement in the z-axis direction discontinuous, which is time-consuming and reduces operational efficiency. In this study, starting from the optical imaging principle of Robert Hoffman modulation contrast method (RC), we propose a defocus detection method for the RC observation mode of an optical microscope. Our method can determine the direction of defocus, which is not available in previous defocusing detection methods. Utilizing this method, we achieve rapid focus for the micro-effector while it is moving along the z-axis direction.</p></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968432823001178","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

The micro-operation robot is widely used in micro-manipulations of biological cells in biological and medical experiments. It plans and controls micro-effector movement based on image feedback information to achieve micro-operations. However, the displacement information of the micro-effector on the x-y plane can be obtained from the image, but not the position information of the micro-effector in the z-axis direction. This makes the micro-effector movement in the z-axis direction discontinuous, which is time-consuming and reduces operational efficiency. In this study, starting from the optical imaging principle of Robert Hoffman modulation contrast method (RC), we propose a defocus detection method for the RC observation mode of an optical microscope. Our method can determine the direction of defocus, which is not available in previous defocusing detection methods. Utilizing this method, we achieve rapid focus for the micro-effector while it is moving along the z-axis direction.

一种在RC观测模式下获取物体离焦信息的方法
微操作机器人广泛应用于生物和医学实验中对生物细胞的微操作。它根据图像反馈信息对微效应器运动进行规划和控制,实现微操作。但是,从图像中可以得到微效应器在x-y平面上的位移信息,而不能得到微效应器在z轴方向上的位置信息。这使得微效应器在z轴方向上的运动不连续,既耗时又降低了操作效率。本文从Robert Hoffman调制对比法(RC)的光学成像原理出发,提出了一种光学显微镜RC观测模式的离焦检测方法。我们的方法可以确定离焦的方向,这是以往的离焦检测方法所无法做到的。利用这种方法,我们实现了微效应器沿z轴方向移动时的快速对焦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micron
Micron 工程技术-显微镜技术
CiteScore
4.30
自引率
4.20%
发文量
100
审稿时长
31 days
期刊介绍: Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信