Alejandro Martínez Carrasco, Raquel Real, Michael Lawton, Regina Hertfelder Reynolds, Manuela Tan, Lesley Wu, Nigel Williams, Camille Carroll, Jean-Christophe Corvol, Michele Hu, Donald Grosset, John Hardy, Mina Ryten, Yoav Ben-Shlomo, Maryam Shoai, Huw R Morris
{"title":"Genome-wide Analysis of Motor Progression in Parkinson Disease.","authors":"Alejandro Martínez Carrasco, Raquel Real, Michael Lawton, Regina Hertfelder Reynolds, Manuela Tan, Lesley Wu, Nigel Williams, Camille Carroll, Jean-Christophe Corvol, Michele Hu, Donald Grosset, John Hardy, Mina Ryten, Yoav Ben-Shlomo, Maryam Shoai, Huw R Morris","doi":"10.1212/NXG.0000000000200092","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>The genetic basis of Parkinson disease (PD) motor progression is largely unknown. Previous studies of the genetics of PD progression have included small cohorts and shown a limited overlap with genetic PD risk factors from case-control studies. Here, we have studied genomic variation associated with PD motor severity and early-stage progression in large longitudinal cohorts to help to define the biology of PD progression and potential new drug targets.</p><p><strong>Methods: </strong>We performed a GWAS meta-analysis of early PD motor severity and progression up to 3 years from study entry. We used linear mixed-effect models with additive effects, corrected for age at diagnosis, sex, and the first 5 genetic principal components to assess variability in axial, limb, and total Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III scores.</p><p><strong>Results: </strong>We included 3,572 unrelated European ancestry patients with PD from 5 observational cohorts and 1 drug trial. The average AAO was 62.6 years (SD = 9.83), and 63% of participants were male. We found an average increase in the total MDS-UPDRS III score of 2.3 points/year. We identified an association between PD axial motor progression and variation at the <i>GJA5</i> locus at 1q12 (β = -0.25, SE = 0.04, <i>p</i> = 3.4e<sup>-10</sup>). Exploration of the regulation of gene expression in the region (<i>cis</i>-expression quantitative trait loci [eQTL] analysis) showed that the lead variant was associated with expression of <i>ACP6</i>, a lysophosphatidic acid phosphatase that regulates mitochondrial lipid biosynthesis (cis-eQTL <i>p</i>-values in blood and brain RNA expression data sets: <10<sup>-14</sup> in eQTLGen and 10<sup>-7</sup> in PsychEncode).</p><p><strong>Discussion: </strong>Our study highlights the potential role of mitochondrial lipid homeostasis in the progression of PD, which may be important in establishing new drug targets that might modify disease progression.</p>","PeriodicalId":48613,"journal":{"name":"Neurology-Genetics","volume":"9 5","pages":"e200092"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/86/92/NXG-2023-000032.PMC10409573.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology-Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/NXG.0000000000200092","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: The genetic basis of Parkinson disease (PD) motor progression is largely unknown. Previous studies of the genetics of PD progression have included small cohorts and shown a limited overlap with genetic PD risk factors from case-control studies. Here, we have studied genomic variation associated with PD motor severity and early-stage progression in large longitudinal cohorts to help to define the biology of PD progression and potential new drug targets.
Methods: We performed a GWAS meta-analysis of early PD motor severity and progression up to 3 years from study entry. We used linear mixed-effect models with additive effects, corrected for age at diagnosis, sex, and the first 5 genetic principal components to assess variability in axial, limb, and total Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III scores.
Results: We included 3,572 unrelated European ancestry patients with PD from 5 observational cohorts and 1 drug trial. The average AAO was 62.6 years (SD = 9.83), and 63% of participants were male. We found an average increase in the total MDS-UPDRS III score of 2.3 points/year. We identified an association between PD axial motor progression and variation at the GJA5 locus at 1q12 (β = -0.25, SE = 0.04, p = 3.4e-10). Exploration of the regulation of gene expression in the region (cis-expression quantitative trait loci [eQTL] analysis) showed that the lead variant was associated with expression of ACP6, a lysophosphatidic acid phosphatase that regulates mitochondrial lipid biosynthesis (cis-eQTL p-values in blood and brain RNA expression data sets: <10-14 in eQTLGen and 10-7 in PsychEncode).
Discussion: Our study highlights the potential role of mitochondrial lipid homeostasis in the progression of PD, which may be important in establishing new drug targets that might modify disease progression.
期刊介绍:
Neurology: Genetics is an online open access journal publishing peer-reviewed reports in the field of neurogenetics. Original articles in all areas of neurogenetics will be published including rare and common genetic variation, genotype-phenotype correlations, outlier phenotypes as a result of mutations in known disease-genes, and genetic variations with a putative link to diseases. This will include studies reporting on genetic disease risk and pharmacogenomics. In addition, Neurology: Genetics will publish results of gene-based clinical trials (viral, ASO, etc.). Genetically engineered model systems are not a primary focus of Neurology: Genetics, but studies using model systems for treatment trials are welcome, including well-powered studies reporting negative results.