{"title":"Roles of dystonin isoforms in the maintenance of neural, muscle, and cutaneous tissues","authors":"Nozomu Yoshioka","doi":"10.1007/s12565-023-00739-1","DOIUrl":null,"url":null,"abstract":"<div><p>Dystonin (<i>DST</i>), also known as bullous pemphigoid antigen 1 (<i>BPAG1</i>), encodes cytoskeletal linker proteins belonging to the plakin family. The <i>DST</i> gene produces several isoforms, including DST-a, DST-b, and DST-e, which are expressed in neural, muscle, and cutaneous tissues, respectively. Pathogenic <i>DST</i> mutations cause hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) and epidermolysis bullosa simplex (EBS); therefore, it is important to elucidate the roles of DST isoforms in multiple organs. Recently, we have used several <i>Dst</i> mutant mouse strains, in which the expression of Dst isoforms is disrupted in distinct patterns, to gain new insight into how DST functions in multiple tissues. This review provides an overview of the roles played by tissue-specific DST isoforms in neural, muscle, and cutaneous tissues.</p></div>","PeriodicalId":7816,"journal":{"name":"Anatomical Science International","volume":"99 1","pages":"7 - 16"},"PeriodicalIF":1.2000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Science International","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12565-023-00739-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dystonin (DST), also known as bullous pemphigoid antigen 1 (BPAG1), encodes cytoskeletal linker proteins belonging to the plakin family. The DST gene produces several isoforms, including DST-a, DST-b, and DST-e, which are expressed in neural, muscle, and cutaneous tissues, respectively. Pathogenic DST mutations cause hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) and epidermolysis bullosa simplex (EBS); therefore, it is important to elucidate the roles of DST isoforms in multiple organs. Recently, we have used several Dst mutant mouse strains, in which the expression of Dst isoforms is disrupted in distinct patterns, to gain new insight into how DST functions in multiple tissues. This review provides an overview of the roles played by tissue-specific DST isoforms in neural, muscle, and cutaneous tissues.
期刊介绍:
The official English journal of the Japanese Association of Anatomists, Anatomical Science International (formerly titled Kaibogaku Zasshi) publishes original research articles dealing with morphological sciences.
Coverage in the journal includes molecular, cellular, histological and gross anatomical studies on humans and on normal and experimental animals, as well as functional morphological, biochemical, physiological and behavioral studies if they include morphological analysis.