{"title":"A computational peptide model induces cancer cells' apoptosis by docking Kringle 5 to GRP78.","authors":"Ibrahim Khater, Aaya Nassar","doi":"10.1186/s12860-023-00484-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cells can die through a process called apoptosis in both pathological and healthy conditions. Cancer development and progression may result from abnormal apoptosis. The 78-kDa glucose-regulated protein (GRP78) is increased on the surface of cancer cells. Kringle 5, a cell apoptosis agent, is bound to GRP78 to induce cancer cell apoptosis. Kringle 5 was docked to GRP78 using ClusPro 2.0. The interaction between Kringle 5 and GRP78 was investigated.</p><p><strong>Results: </strong>The interacting amino acids were found to be localized in three areas of Kringle 5. The proposed peptide is made up of secondary structure amino acids that contain Kringle 5 interaction residues. The 3D structure of the peptide model amino acids was created using the PEP-FOLD3 web tool.</p><p><strong>Conclusions: </strong>The proposed peptide completely binds to the GRP78 binding site on the Kringle 5, signaling that it might be effective in the apoptosis of cancer cells.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408047/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12860-023-00484-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cells can die through a process called apoptosis in both pathological and healthy conditions. Cancer development and progression may result from abnormal apoptosis. The 78-kDa glucose-regulated protein (GRP78) is increased on the surface of cancer cells. Kringle 5, a cell apoptosis agent, is bound to GRP78 to induce cancer cell apoptosis. Kringle 5 was docked to GRP78 using ClusPro 2.0. The interaction between Kringle 5 and GRP78 was investigated.
Results: The interacting amino acids were found to be localized in three areas of Kringle 5. The proposed peptide is made up of secondary structure amino acids that contain Kringle 5 interaction residues. The 3D structure of the peptide model amino acids was created using the PEP-FOLD3 web tool.
Conclusions: The proposed peptide completely binds to the GRP78 binding site on the Kringle 5, signaling that it might be effective in the apoptosis of cancer cells.